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ABSTRAC)

Fast path-planning algorithms are needed for zatonomous vehicles and tac.!~.¢ *errain-analysis
tools. We explore a new approach using "optimal-path maps", that give the best path .. ~ ;] point
from any given start point in cross-country two-dimensional terrain for a moving agent of -, *

gible size. Such maps allow fast point-location algorithms at run-time to categorize the start point
according to the behavior of the optimal path to the goal, from which the path can be reconstructed.
We study terrain modelled by piecewise-linear roads and rivers, polygonal obstacles, and by con-
vex polygonal homogeneous-cost areas ("weighted regions"). We explore two methods for con-
structing optimal-path maps, one based on wavefront-propagation point-to-point path planning, and
a more exact divide-and-conquer aizorithm that reasons about how optimal paths must behave. In
the exact approach, boundaries caused by terrain features are characterized using analytical

geometry and optimal-path principles, and partial optimal-path maps are merged into complete ones.
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L INTRODUCTION

A. OVERVIEW OF PATH PLANNING

Motion planning is an important problem in robotics, computational geometry, 2nd many other applica-
tions. A central part of motion planning, known as path or route planning, is the process of determining the
pash to be taken either by an agent’s appendages or by the entire agent. The research reported herein is con-
cemed with the latter of these two path-planning processes. Specificalfy, it is concered with platning paths
over long distances in cross-country terrain, Thus we are not concemed with small-scale motion, where robot
appendages are moved among objects on a work-bench or robot legs are placed on the ground, for example,
nor with medium-scale motion, where the agent’s path must be planned so as to provide adequate clearance
for itself, but with Jarge-scale motion, where the size of the agent is negligible compared with the surround-
ing terrain,

Path planning will not typically be ihe only, or even the most important task which competes for comput-
ing resources. For example, the purpose of an autonomous vehicle is to go somewhere independently and ac-
complish a niission, a task which will require a Jarge number of intermediate tasks which will each take
computing time and space. Therefors it is important to find path-planning algorithms which use as few resour-
ces as possible. This means increasing run-time speed and at the same time decreasing storage requirements.
These are usually conflicting goals, but it is often possible to increase run-time performance oz reduce storage
at the expense of preprocessing time in a pre-mission phase when resources are not.in demand.

The problem of finding an optimal (least-cost) pat/ between two points for 2, negligibly small agent over
fixed, two-dimensional terrain with known cost characteristics can be attacked by several methods. When the
agent is constrained to travelling on a finite number of known paths, the problem can be solved by network
search algorithms, a subject of thorough study in operations research. When the agent is not constrained to
travelling on specified paths, the area is called free space. Path planning in two-dimensional free space is
beginning to be studied in depth by researchers in such fields as artificial intelligence, rebotics, and computa-
tional geometry. Most methods require homogencous-cost background terrain interspersed with impassable

obstacles, as for example for the Visibility-Graph algorithms [Ref. 1}. However, handling additional types of




terrain features (for example, linear low-cost features, e.g., roads, linear fixed-crossing-cost features, e.g.,
rivers, [Ref. 2] and polygonal regions of homogeneous-cost terrain, e.g., forests, swamps, or fields, [Ref. 3])
will improve the: ability to model ferrain realistically.

A promising approach to two-dimensional path-planning in fres space which we develop in this research,
called the optimal-path-map approach, provides greatly improved run-time speed at the expense of preprocess-
ing time and storage. This approach partitior- the plane during preprocessing into regions with similariy-be-
haved optimal paths and then locates a start point in this partition at run time. Figure 1 shows an example
optimal-path map with boundaries separating the regions of similarly-behaved optimal paths. Additionally, a
set of vectors is superimposed on the optimal-path map in Figure 1 showing initial directions of selected op-
timal paths. We develop the theoretical basis for such a partitioning for a more general set of terrain features
than has previously been used in optimal-path-map construction, making this approach more practical for real-
woild cross-country path planning. Then once the optimal-path map is constructed, our approach can appeal
to algorithms with worst-case ime complexity of O(log n) to locate a start point in a planar partition (see Chap-
ter II, Section B), where .. is the number of terrain-feature vertices. Once the start point is located in the par-
tition, the behavior of the optimal path is identified and the path can be reconstructed. This response time is
very aliractive, especially for real-time systems like missiles or for systems with many competing computing
requirements like autonomous vehicles.

The principal results of our research are threefold. First, we adapted the wavefront propagation algorithm
to find boundaries between regions of start points whose optimal paths are similarly behaved, and implemented
three versions of the new algorithm. Second, we characterized boundaries mathematically by meaas of analytic
geometry. Third, we proposed an algoritlin to construct the planar partition using these mathematical results

for convex polygonal and piecewise-linear (errain, as an altemaltive to our wavefront propagation algorithm.

B. ASSUMPTIONS

We assume that the terrain is known, and can be modelled by combinations of the five primitive types of
terrain features presented below. We assume that terrain-feature edges can be modelled piecewise-lineatly,
that terrain is isotropic (traversal cost is independent of direction of travel), and that no two polygonal regions

have common vertices. Althosgh the mobile agent is constrained to travel in the two-dimensional planc of the
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input map, assigned costs of travel may reflect that the actual surface being traversed varies in beight. (See
also Chapter I, Sections C and D.)
Following Mitchell [Ref. 4], we make the assumption called the general-positior: assumption (Appendix
A, Assumption 1-3), that no terrain-feature vertex lies on a homogeneous-benavior boundary geoerated by
another terrain feature, i.e., that there is not an accidental alignment of boundaries with terrain-%atute ver-
tices. This restriction does not change the following results significantly, but allows the discussion to proceed
without convoluted, but unimporiant, conventions. In an actual implementation of the algorithms proposed
below, this assumption must be retracted.
The following five termin-feature types axe allowed:
o Background. Areas of the map which do not contain other terrain features have a fixed cost
per distance travelle.l. .
» Obstacles, An obstacle is a convex polygon enclosing impassable terrain.

o Rivers. A river segment is a line segment whose cost to the agent (o cross anywhere along its
length is a fixed constant, not dependent on the angle of crossing.

o Roads. A road segment is a line segment with a fixed cost per distance for length-wise traver-
sal. Thus a road segment is infinitesimally thin, can be crossed at no cost to the agent, and can
be entered or left anywhere along its length,

» Convex Homogeneous-Cost Areas. A convex lomogeneous-cost area (HCA) is a convex
polygon with a constant positive cost per distance travelled. An HCA may have cost per dis-
tance greater or less than the background terrain, but not zero. The agent may enter or leave the
area al any point on its circumference at no additional cost.

These terrain-feature types could all be modelled by HCAs. However, allowing obstacle, river, and road
testain featuces enbances efficiency by allowing us to take advantage of their simplicity. Specifically, it is an
advantage to avoid, where possible, the complicated analysis of paths through homogeneous-cost regions (see
Chepter 11, Section E2b(3)).

How realistic are the above assumptions? There are at least three issues. First, is it reasonable to expect
th1t we know the characteristics of the terrain; second, car terrain be adequately modelled by piecewise linear
curves; and third, will the use of convex non-adjacent polygons be sufficient? As discussed in Chapter 11, Sec-
tion D4, the Defense Mapping Agency and oti.  U.S. Govemnment agencies cusrently have the ability to

produce maps which charactetize terrain according to the speed at which a given vehicle type can traverse it.

(Of course, cost in terms of time is the reciprocal of speed.) The program used to produce these maps, called




Army Mobility Model (AMM), takes as input a digitized combinaticn of soil conditions, vegetation, man-mads
features, and elevation which is available at present only for selected areas of the earth, but there is an ongo-
ing effort to expand this database. As this database is expanded, AMM will be able to produce cost maps of
more of the world’s surface, so that a path-planning system which uses AMM cost maps as input can be ex-
pected to know the characteristics of the terrain. However, an additional consideration is that terrain may be
impermanent. In this case eur assumptions will be invalidated.

The secend issue is whether terrain can be adequately modelled using only piecewise linear curves. Com-
putaiional gecmetry relies very heavily on the use of piecewise linear curves to approximate reality, since there
is a fixed precision associated with any computer, and a finite amount cf storage. Iu fact, the very concep? of
continuity is a mathematical abstraction, since at some level the most smoothly continuous curves will be seen
to degenerate into discrate elements. For example, a wood-line may seem to form a continuous curve, when
in fact at the scale of individual trees it is clearly discontinuous. Since the database maintained by the Defense
Mapping Agency has a maximum resolution of 12.5 meters square, we can be assured that no representation
we propose will be more accurate than this. One additional consideration is that small nuances of the terrain
will rormally have much less effect on opiimal paths than will large features. Of course, it is always desirable
from the viewpoint of efficiency to use as few line segments as possible to approximate a curve in order to
reduce the number of terrain-feature vertices in the input map.

The third question is much more of a problem. The use of convex polygons will clearly nct approximate
all types of terrain if we require that no two polygons have common vertices. The output of Army Mobility
Model for example, allows non-convex polygons. This research uses the non-adjacent-convex-polygon as-
sumption in order to attack a problem of somewhat smaller scope first, with the intention of expauding the
scope in the future to incorporate non-convex regions. The next step will be to extend the analysis of Chapter

V to include the case of adjacent convex polygons.

C. THE OPTIMAL-PATH-MAP APPROACH TO PATH-PLANNING
The optimal-path-map approach to path planning groups paths according to their general behavior with
respect (o a goal point. A surjective function is defined to map optimal paths to generalizing path descriptions

so that paths with similar behavior are mapped to the same description. The usual definition of “similar be-
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havior" is crossing the same sequence of terrain-feature vertices and edges. Boundaries are constructed to par-

tition the plane of the map into regions whose start points have similar behavior. Then to determine an optimal

path, a given start point is located vithin the partition. The path description of the region associated with the-
start point applies to the optimal path from the start point, so this path description is specialized for the given

start point to give an optimal path. The focus of our research is the construction of the planar partition.

How can paths be represented so they can be grouped according to their behavior? Theorem -2 states that
optimal paths among piecewise-linear and polygonal terrain are always piecewise linear, changing direction
only at terrain-feature vertices and edges. This fact suggests two possible ways to represent optimal paths. The
more natural way to represent a single piecewise-linear path would be by listing the coordinates of its tum
points. Alternately, we could list the #2rain-feature vertices and edges at which a path tums. The first repre-
sentation has the difficulty t-at there is no immediate way to tell from the list whetber or not turn points from
tws ddifferent paths Jic on the same terrain-feature edge. The second representation allows paths to be grouped
more essily zccording to whether they cross the same terrain-feature edges and vertices, but has the difficul-
ty th2: 1t is not clear by looking at the list what the coordinates of a tum point are on a terrain-feature edge.
fhis conflict suggests a composite rapresentation wherein a list cotains terrain-feature vertices and edges,
and for each edge, may also contains as supplemental information the exact coordinates at which the path cros-
ses the edge. This is the representation we adopt, calling such a list a path list.

The path list can be used tu represent a specific optimal path as well as a generalized description of an
optimal path. If a path ist has a terrain-feature vertex as its first element, the path is completely determined
because it will 5o from the start point directly to the vertex, from where a unique path goes to the goal (Corol-
lary I-3.1, Appendix A). If a path list has an edge as its first element and no supplemental information is in-
cluded with that edge, the path list represents all optimal paths whose first tum point lies on that edge. If
however, coondinates of the crossing point are included with the edge, the path is completely determined. When
listing an edge in a path list, it is also important to distinguish between edges crossed from different directions,
because for example, paths may enter the same portion of a road from both sides; we want to distinguish be-
tween the two sets of paths which come from eitber side of the road. For consistency in our discussions, we
adopt the convention that for a start point with no feasible paths (for example, a start point inside an impass-

able obstacle), the optimal-path list is a null symbol concatenated with the goal point.



Now the pathi-generalizing function ¢an be defined more fully for the usual definition of similar behavior
of paths. For the set O of all optimal paths and the set (VUE)* of all combinations of terrain-feature vertices
and edges, the function f : O = (VUE)* maps an optimal path to its path list.

Define a homogeneous-behavior region with respect to a goal G as the set of all start points whose op-
timal paths are mapped by the path-generalizing function to the same set. Thus, start points whose optimal
paths have the same path lists are considered to be in the same homogeneous-behavior region for the usual
definition of the path-generalizing function. Define the root of a homogeneous-behavior region as the first ele-
ment of the path list associated with the region. Since a root may represent a terrain-feature edge which can
be crossed at any point along its length, the supplemental information cannot be retained by the path list as-
sociated with the root. Define a homogeneous-behavior boundary as the locus of points lying in two
homiogeneous-bebavior regions. On a homogeneous-behavior boundary (except for obstacle edges), at Jeast
two optimal paths exist for a given point.

The fundamental principle upon which spatial reasoning about optimal paths is based is the principle of
optimality. In its general sense, the principle of optimality states that if it applies to a system, future optimal
policy in the system depends only on its current state and not on its past history. Theorem I-1 (Appendix A)
states that the principle of optimality applies to the path-planning domain. In other words, it states that the
portion of an optimal path from any point on the path to the goal is also an optimal path.

‘We extend the general-position assumption discugsed above to terrain feature edges by adopting the con-
vention that any terrain feature edge intersected by a2 homogeneous-behavior boundary is to be treated as two
distinct edges, one on each side of the boundary. The immediate result or this assumption, the principle of op-
timality, and Theorem I-2, is the uniqueness of optimal paths from any terrain féature vertex or across the in-
terior of any edge. (Corollary I-3.1, Appendix A.) It follows from the definitions of homogeneous-behavior
regions, roots, arxi boundaries, the general-position assumption, and Theorem I-2 that there is a unique root
associated with eacii homogeneous-behavior region (Corollary 1-3.2). It also follows that homogeneous-be-
havior regions are "star-shaped” with respect to the region root (Corollary I-3.3).

An optumal-path tree of a set of terrain features with respect to a goal point is the index tree for all pos-
sible path lists. In other words, it is the tree whose root represents the goal and whose internal nodes are ter-

rain-feature vertices and edges, such that for each node, the optimal paths from that node’s vertex or edge go




first to the vertex or edge represented by the node’s parent. Therefore, the path list for the vertex or edge as-
sociated with a node is found by following the parent pointer of the node back to the root of the tree, whichis
the goal. Each node of the tree cormresponds to a unique homogeneous-behavior-region root, which cosresponds
to a unique homogeneous-behavior region. Thus, locating a start point in a region of the planar partition is
equivalent to specifying which node of the tree identifies the behavior of the optimal path from that start point.
Figure 2 shows an example planar partition with its corresponding optimal-path trce.

An initial version of the optimal-path tree can be constructed by using a point-to-point path planner to
compute the optimal path from each terrain-feature vertex on the input map and then insesting the tum points
of each resulting optimal path into a tree. The method presented in Chapters V and VI uses the optimal-path
tree to construct the planar partition, and revises it by inserting nodes which correspond to terrain-feature edges.
However, the method presented in Chapter IlI constructs the optimal-path tree at the same time as it constructs
the planar partition.

An gpiimal path map or OPM is a partition of the plane into homogeneous-behavior regions with respect
to a goal, along with its associated optimal-path tree. There is a finite optimal-path tree associaled with every
two-dimensional map consisting of terrain as defined above (Theorem 1-4, Appendix A). The specification of
this optimal-path tree is a necessary part of the optimal-path map, and we will assume that the term optimal-
path map implies both the representation of the planar partition and of the optimal-path tree, with some n:eans
of linking each node with its comresponding homogeneous-tehavior region in the partition. A typical repre-
sentation of the planar partition is the doubly-connected-edge-list discussed in Chapter II, Section B.

Several partitioning algorithms for terrain containing only obstacles (the binary case) have been proposed
inanattempt to present faster solutions to the point-to-point path-planning problem (see Chapter 2), and several
algorithms even solve a portion of the optimal-path-map problem with respect to weighted regions by creat-
ing the optimal-path tree in pursuit of single-path solutions. In this research, we investigate the problem of
creating an optimal-path map for weignted-region terrain, focusing on a solution to the optimal-path-map
problem as an end in itself. We choose to investigate this approach because it offers the most opportunity for
enhancement of run-time performance at the expense of preprocessing time because of the promise of O(log

n) run-lime complexity to identify an optumal path for a map of n terrain-feature vertices.
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D. SUMMARY OF RESEARCH REPORTED HEREIN

In Chapter II, we explain and classify the path-planning algorithms relevant te shis research, specifically
those dealing with negligible-sized agents in a fixed, known environment where terrain is two-dimensional,
free space.

Cne method of cbtaining sub-optimal solutions to the optimal-path-map problem uses a version of the
standard wavefront propagation aigorithni. Such an algerithm is presented in Chapter 111, and the extensions
necessary to create optimal-path maps are developed. Chapter IV is an analysis of the algorithin in the pre-
vious chapter. Two primary sources of error are examined, and known results of inherent inaccuracy in
wavefront propagation are extended to the resulting OPMs. The theoretical time and space complexity of the
above algorithm is presented, along with empirical results concerning execution times for three altemative
beuristics used with the algorithm.

A second approach to solving the two-dimensional optimal-path-map problem is to reason about how op-
timal paths behave in the presence of various terrain features. This reasoning leads to analytical characteriza-
tion of the boundaries between homogeneous-behavior regions of similarly-behaved optimal paths as functions
of tersain feature characteristics. It turns out that all boundaries generated by the roads, sivers, and obstacles
are segments of conic sections. Other boundaries are more mathematically complex, and in many cases can-
not be described in closed-form expressions. First in Chapter V, a set of definitions is presented, followed by
development of the characterizations of boundaries generated by “primitive” terrain feature types, i.c., single
polygons and single line-segments. Then the characterization of more complex combinations of primitive ter-
rain {eatures is discussed, and decomposability is defined for construction of optimal-path maps.

in Chapter V1, algorithms use the results of Chapter V to generate OPMs more accurate than those of
Chapter HI for isolated occumrences of each type of primitive terrain feature, Then an algorithm based on the
divide-and-conquer paradigm is presented to generate OPMs for some "decomposable” maps with multiple
terrain features. In Chapter VII the divide-and-vonquer exact-OPM algorithm is analyzed, first in terms of
sources of error, and then with respect to theciutical time and space complexity. Then the empirical perfor-

mance of an implenicatation is discussed. Chapter VIZI sunintatizes the results of the research.




O. RELEVANT RESEARCH

A. APPLICABLE CONCEPTS FROM ARTIFICIAL INTELLIGENCE
1. Search Methods

One of the central problem-solving techniques in Artificial Intelligence is the use of search [Ref. 5],
{Ref. 6). A search problem is couched in terms of a current state and a goal state, operators are defined which
transform the system from one state to another, and a search is conducted for a sequence of operators which
will transform the current state to a goal state. Conceptually, a search space is a directed graph whose nodes
represent all possible states, and whose edges represent opesators. Solving the problem means applying graph-
search algorithms in the search space to find a path from a start node to a goal node. The search space may be
avery large, even an infinite graph which is not represented explicitly, but as the algorithm proceeds, it creates
a sub-graph, called a search graph (or search tree), whose nodes are the states actually reached duriog the
search, The underlying aim is to find ways to make the search graph as small as possible while still i. luding
the goal state, i.e., to look at as few states of the search space as possible on the way to finding the goal. There
are two ways of limiting the size of the search graph. One way is to guide the search by mieans of beuristics,
and the ntber is to represent the problem i such a way as to reduce the search space.

‘When no domain-specific information is used to guide decisions about whichnode of the search graph
to process next, the process is called blind search. Although few problems have a search space small enough
to allow practical use of blind search, the techniques used provide the foundation for heuristic search, where
information is used to guide the search. All the search techniques discussed below can be said to conform to
a general model where the search is initialized by placing an initial node on an agenda, and proceeds by ex-
panding the first node on the agenda, putting the node’s children on the agenda in a manner which varies from
technique to technique.

Branch-and-bound seatch, also known as Difkstra’s algorithm, is a geperalization of breadth-first
search whickh uses heuristic information. The distance of 2 node from the start is not measured by the number
of edges from the node to the root as in breadth-first search, but by the total cost of the edges. Thus, each edge

has an associated cost, and at cach iteration, after auode has been expanded and its children placed in the agen-
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da, the agenda is sorted by cost to keep lower-cost nodes first, Since physical distance is the nozmal metric in
the path-planning domain, this is a natural search technique to use. This technique guarantees that the first path
fourx to the goal iz the lowest-cost solution.

Another search strategy which is widely used in path planning is called A* search. It sorts its agen-
da according to the sum of the cost function and evaluation function at each node. If the evaluation function
value from any point to the goal is a lower bound on the actual cost from the point to the goal, it is guaranteed
that the irst time the optimal path to the goal is selected from the agenda it will be zecognized as optimal.

2. Domain-Specific Heuristics as Guides to Search

General solutions to problems tackled by Artificial Irtelligence researchers are usually so difficult
that great advantages are to be gained by finding rules-of-thumb to focus the search in the right direction.
Heuristic search strategies use cost and/or evaluation functions tc guide the search. Rich [Ref. 7] states that
the field of artificial intelligence is largely the study of heuristic search for solving difficult problems, and The
Handbook of Artificial Intelligence callsheuristic search "one of the key contributions of Artificial Intelligence
to efficient problem-solving" [Ref. 5]. In the path-planning domain, there is a natural beuristic which is often
used to guide search for an optimal-cost path, which is that for a path from the start point to an intermediate
point, if the intermediate point is closer in straight-line distance to the goal than some other intermediate point
from another path (irrespective of terrain yet to be negotiated),the first path is preferred over the second for
further exploration.

3. Problem Representation

It is often the case in problems studied in artificial intelligence research that a problem which seems
very difficult when represented in one way will suggest a natural solution when represented in a different way.
In otber words, finding a good problem representation is often the key to efficient solution of the problem, as
well as to clear understaning of the problem on the part of researchers [Ref. 5], Path-planning algurithms, for
example, are essentially ways of transforming an infinite search space to a finite one, and then searching the

transformed search space using one of several beuristic-aided search algorithms discussed above.




B. APPLICABLE CONCEPTS FROM COMPUTATIONAL GEOMETRY
1. Definitions for Optimal-Path Maps
a. PathList

When optimal paths are guaranteed to consist of line segments between a finite number of tum
points, which Theorem I-2 shows is true of the terrain considered in this research, they san be represented by
listing these tum points. It is also shown in Theorem I-2 that these turn points occur only at terrain-feature ver-
tices and edges. This suggests two possible ways to list the turn points. The most direct way is to list the coor-
dinates of the points. This allows direct reconstruction of the path from its list. However, this representation
makes it somewhat more difficult to compare two lists to determine if the paths they represent cross the same
edges. It might be better to list explicitly the vertices and edges that a path crosses. This representation has the
drawback, however, that some computation would be necessary to determine for each edge crossing exactly
where the crossing occurred. Since our research is primarily concerned with grouping patis together accord-
ing to their general behavior, we adopt the second representation, calling such a list a path list. An example
path list from start point S to goal point G in Figure 3 is [E,A,G], while from point R there are three possible
good path lists of [F,C,G}, [H,G), and [PQ,G]. For consistency in later discussions, we say that for a start point
with no feasible paths (for example a start point in the center of an impassable obstacle), the path list consists
of a special null symbol concatenated with the goal point.

b. Path-Generalizing Function

The concept upon which the optimal-path-map approach to path planning is based is that paths
can be grouped according to their bebavior. A path-generalizing function £:0—B is defined from the set of
optimal paths to the set of behaviors of optimal paths, which maps an optimal path to a description of its be-
havior. Since many paths may share the same behavior descriptions, f is a surjective function. The usual way
to define the behavior of a path is by listing Lhe vertices and edges it crosses. In that case B = (VUE)*, the
set of all combinations of terrain-feature vertices and edges. Since path lists are defined in terms of vertices
and edges, the usual definition of f is that it maps an optimal path to its path list.

A path-generalizing relation R which relates two points if the path-generalizing function maps

their optimal paths to identical path lists is an equivalence relation because the identity relation is in general
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an equivalence relation. Since the domain of f is the set of all points on the input map, f induces a partition on
the plane of the input map through this equivalence relation.
c. Homogeneous-Behavior Region

Define a/iomogeneous-behavior region with respect to a goal point and a path-generalizing func-
tion as the set of start points whose optimal paths to that goal point are mapped by the path-generalizing func-
tion to the same path bebavior. In our work, this is equivalent to saying that it is the set of start points whose
optimal paths have the same path lists. Each homogeneous-behavior region corresponds to an equivalence
class of the path-generalizing relation R, and so is a subdivision of the partition induced by R on the plane of
the input map. In Figure 3, for example, point S is in the homogeneous-behavior regiion enclosed by segments
El, K, KL, and LE.

An optimal-path map (OPM) is defined as the partition of the plane of the input map into
homogeaeous-behavior regions, along with their associated path lists. For the conceptual representation of an
optimal-path map shown in the top half of Figure 3, the two data structures in the bottom balf of the figure
fully specify the OPM.

d. Homogeneous-Behavior-Region Root

Because of the definition of homogeneous-behavior regions, each unigue path list defines a
homogeneous-behavior region. Thus given a path list, the associated region is defined. By the general-posi-
tion assumption (Assumption I-3, Appendix A), there will be no accidental alignment of boundaries from
another region such that there is more than one path list from a region. The first element of the path list as-
sociated with a region is defined as the homogeneous-behavior-region root. For example, in Figure 3 the path
list of start point S with respect to goal point G is [E,A,G], and point E is the region root of the region of which
S is amember.

2. Data Structures
Several data structures with wide utility in computational geometry are useful in the optimal-path-
map domain. Since an optimal-path map consists of the set of path lists from homogeneous-behavior-region

roots and a planar partition, these two ilems must be represented.
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a. The Optimal-Path Tree

The optimal-path tree is a way of representing a set of path lists. It is a direct extension of the
shortest-path tree concept [Ref. 8]. An optimal-path tree (OPT) is a tree whose root (not the same as a
bomogeneous-behavior-region root) is the specified goal point, whose nodes are terrain-feature vertices and
edges, and for which an optimal path from the terrain-feature vertex or edge represented by any node in the
tree goes directly to the vertex or edge represented by that node’s pareat. Each node of the tree corresponds
to a hemogeneous-behavior region, and every homogeneous-behavior region is represented by a node. (see
Theorem 1-4, Appendix A). Thus by labeling regions and OPT nodes the same, or by establishing pointers
from regions to nodes of the OPT, a linkage is established which allows retrieval of the appropriate OPT node
given a region. Then the path list associated with the region can be reconstructed by tracing upwards through
the tree to the tree’s roct. Note, bowever, that furioer computation usually is necessary to reconstruct the op-
timal path from the path list by finding optimal edge crossings. Another important characteristic of the op-
timal-path tree is that it reduces the redundancy of storage of optimal pzilis associated with terrain-feature
vertices and edges by integrating them all into one structure. In Figum 3, the optimal-path tree is shown for
the given terrain map.

b. The Doubly-Connected Edge List (DCEL)

A planar partition could be represented in edge-list form iz: which, fos each vertex of a piecewise-
linear approximation of the boundary between subdivisions of the partition an ordered list of its incident edges
is given. Although this is a natural representation, some of the infornation implicitly present could be explicit-
ly listed, enhancing efficiency at the expense of preprocessing time and storage. A doubly-connected edge list
is such a data structure that has proven to be quite useful in representing a planar partition. Represent each
edge as a node in the DCEL, and label each edge, vertex, and re gicn. Note that the terms edge and vertex as
used in connection with the DCEL refer to piecewise-linear homogeneous-behavior-region boundary edges
and vertices, not to terrain-feature edges and vertices. With ezch edge-node, associate a six-tuple of data ele-
meats (V1,Y2,R1,R2,P1,P2). The V;j are the two vertices of the edge. The assignment of vertices to the two
fields V1 and V2 is arbitrary, but once assigned is fixed. Once the vertices are assigned, the edge becomes
directed from V10 V2, Ki is the region (or face in the terminology of computational geometry) to the fcft of

the edge, and Rz is the 1egion to the right. Py is a pointer to the edge-node which is adjacent to edge ViV2in
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a counterclockwise rotation about Vi, and similarly for P2 with respect to V2, A partia listing of the DCEL
for the optimal-path map of Figure 3 is also shown. [Ref. 8]

For a DCEL representing a partition with n vertices, a single pa= ' 1 titne O(n) can creale arrays of
beaders of vertex and region linked lists, so that strasgntforward algorithms can retrizve the sequence of edges
incident on a vertex or enclosing a region, in time proportional to the number of edges involved. A graph in
edge-list form can be transformed to a DCEL in time C(n). [Ref. 8]

An extension of the DCEL allows curved edges, as well as piccewise-linear ones, to be represented.
Additional fields for each edge-pode can be added to the DCEL to represent the algebraic form of the curve
and to represent additional parameters necessary to specify the curve analytically. For example, if a curve rep-
resented a segment of a hyperbola, the entry in the first additional field would note that, and the second addi-
tional field would contain the two parameters of the equation of 2 hyperbola. Two points on the hyperbola, the
endpoints of the segment, are listed in the DCEL, so the Eyperbola segment is fully specified.

3. The Plane Sweep Paradigm

Many algorithms in computational geometry follow the plane sweep paradigm. The idea is to process
a geomelrical structure in the plane in an ordered fashion, normally *:v sweeping an imaginary vertical line
from left to right from event poiot to event point, where an event point is a poink in the plane at which some
action may nced to be taken. Two data structures are useful in conducting a plane sweep, 20 event-point
schedule and a sweep-line status. At any potit alsng the sweep 2xiy, the geometrical structure jis characterized
by a status which is the relasicu of the veiti af line to the geometrical stnucture. For example, the status may
be an ordered list of line segments of the structure which intersect the swecep line. This status will change at a
finite number of points alung the sweep axis for a finitely-describabiz structur.. Thege chapges in status are
the places at which the problem must be processed or analyzed. These peints along the sweep axis are main-
tained in the event-point schedule. The event-point schedule is oftens gome form of a zucuz. [Ref. 8)

4. Point-Location in the Cartesian Plane

Linked to any algoritlun that pastitions the Canesian plane in order to represent properties of points
ineach regionis the requirement to retrieve those propesties wben queried about any point in the plane specified
by its coordinates. Algorithms that build optimal-path maps ase pastitioning the plape into regions such that

cach region contains those start points with sintilarly -behaved optimal paths to a given goal-point, 1t is nsoces-




sary to determine in which region the point lies. 1f the boundaries between regions are piecswise-linear cur-
ves, there are several algorithms from computational geometry which can be used to locate apoint in the planar
partition.

The slab method of point location in a planar partition draws a horizontal line through each vertex of
the partition, and then sorts the regions (or slabs) lying between horizontal lines from top to bottom during
preprocessing. This allows location of the point within a slab in O(log n) time by use of bisection search based
on the y-coordinate of the point, where n is the number of vertices in the partition. Line segments which com-
prise the boundaries of the partition cross through each slab. Within a slab they can be ordered from left to
right because at no point in the interior of a slab do two line segments intersect, since the slabs were defined
by drawing horizontal lines through all the intersection points of the partition. Then bisection search can be
used to locate the point horizontally between line segments within the slab in O(log n) time, for a total loca-
tion time of O(log n +log n) = O(log n). Two disadvantages to this method are the requirement for preprocess-
ing time and storage space. Preparata and Shamos show how to reduce the basic O(n2 log n) preprocessing
time to O(nz) using a plane sweep approach, but the algorithm requires at worst O(nz) space. [Ref. 8}

A second point-location method is the chain method. Instead of dividing the planar graph horizon-
tally with slabs, it finds vertical chains, or connected line segments, of edges, which are monotone with respect
to the y-axis, i.e., such that no two points on the chain have the same y-coordinate. It then constructs two bi-
nary search trees, the first having those chains as nodes and the second having segments of chains as nodes.
The two trees can be traversed in f.)(log2 n) time to locate a point. A DCEL can be preprocessed in O(n log n)
time into the two binary search trees, which take at worst O(n) space. [Ref. 8]

Anoiher point-location method is the triangulation refinement method. A set of connected line seg-
ments is said to be triangulated if each vertex is copoected by a line segment with at least two otber vertices,
i.e., the linc segments all form triangles. The planar partition is triangulated in O(n log n) time by standard
methods from computational geometry, and a hierarchy of triangulations is constructed upon which to search.
This method leads to O(log n) query time, O(n log n) preprocessing time, and O(n) storage. {Ref. 8}

An extension of the chain method, the bridged chain method, uses an elegant method that pemits
search in O(constant) time for subsequent searches, after a higher cost for a first search. It happens that the

chain method meets the conditions for application of the bridging technique, and so bridging is used to ac-
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cumulate information during the search process. This technique brings the chain method to efficiency com-
parable with the triangulation refinement method. [Ref. 8]

Although the above two methods achieve the theorstically optimum worst-case bounds, there may
be sub-optimal methods which afford better practical perfonnance. Specifically, the trapezoid method, which
could be considered an extension of the slab method, gives an O(log n) query which always succeeds in fewer
than 4r log n1+ 3 tests, and uses O(n log n) storage & preprocessing time. Actually, average-case storage
may be O(n). This method has the additional property that it may be extended to curvilinear edges, so it may
be especially useful in our application since instead of approximating curves piecewise-linearly, they may be
represented exactly by their analytical form. [Ref. 8]

A problem with the slab method was the O(n”) worst-case space complexity, where n is the number
of vertices of the graph representing the planar partition. This problem was due to the possibility that edges
could span most of the horizontal slabs, each such edge needing to be segmented into O(n) fragments. In the
trapezoid method, it can be shown that no more than 2 log n fragments will ever be needed for any edge, so
no more than O(n leg n) space is required. The trapezoid method defines a trapezoid as baving two horizon-
tal sides and two other sides which may be unbounded, or else if they exist are edges of the graph not inter-
rupted by ventices. The basic operation of the algorithm is to split a trapezoid into subordinate trapezoids. The
progress of the splitting algorithm is paralleled by the building of a balanced binary search tree which repre-
sents a hierarchy of subordinate trapezoids. This tree can then be searched to locate a point in a trapezoid.
Figure 4 (adapted from Preparata and Shamos {Ref. 8)) shows an example trapezoid with its corresponding
search tree.

The splitting operation for the trap=zoid method proceeds by finding the median y-coordinate among
the vertices contained in the current trapezoid T and dividing T into two "slices” Ty and T2 by drawing a
horizontal line through the median vertex. Then those edges which intersect the top or bottom horizontal side
of T are scanned from left to right, and the first edge which alsc intersects the newly drawn horizontal line,
i.c., which spans Tj or T2, defines a new trapezoid T3. The scan continues until all edges which span Ty or T2
are found, with a new trap2zoid being gencrated for each spanning edge. Note that edge e; defines the first
new trapezoid T3 in Figure 4 because it spans the top and median lines of T. T3 will not need to be further split

because there are no vertices contained in it. Spanning-edge e2 is found next, and creates T¢. Finally e is

19




(a)

Trapezoid T

(b)

Top Slice 'I‘l
Median Line

Y= Ymed

Bottom

Slice '1'2

()

left right

T, T

5

th

Figure 4

‘Trapezoid Method of Point Location

20




found, creating T4. No other spanning edges are found, so Ts and T7 are also defined. T4, Ts, Ts, and T7 all
contain vertices of the graph in their interiors, so they will need to be split furtber in subsequent iterations of
the algorithm. Triangular nodes of the search tree represent horizontal splits at graph vertices, while circular
nodes represent the definition of new trapezoids by spanning edges. There will be n-2 triangular nodes of the
tree, one for each except the left and right extreme vertices of the graph. Edges may form the sides of more
than one trapezoid, however; in fact they may be fragmented into as many as 2 log n segments, as stated above,
Thus the search tree may have as many as O(n log n) nodes, which is the worst-case space complexity. The
tree corresponding to the trapezoids found in Figure 4 is also shown.

The depth of the balanced search tree can be shown to be no more than 4rlog n-h- 3, so a search of
the tree will take no more than that many steps. Thus the worst-case time complexity to locate a point in the
planar partition is O(log n). Since there are O(n) edges and each edge may be segmented into O(log n) frag-
ments, the time required to process the edges is O(n log n), while both the median-finding and the tree-balanc-
ing may be done in O(n log n) time. Thus the preprocessing required is O(n log n).

An added advantage which could be useful to our research is that the trapezoid method can be ex-
tended in some cases to finding a point among edges which are not straight-line segments. This can be done
if first, the curves can be expressed as a single-valued function of one of the coordinates, and second, if it can
be determined in constant time whether a point is on one side or the other of the curve.

5. Intersections Among Line Segments in the Cartesian Piane

A common operation of the algoritams proposed in Chapter V1 is to find intersections between two
piecewise-linear curves. It is thus important to find efficient methods of doing this operation. The intersection
of two piecewise-linear curves with p and q segments respectively would take, using th naive approach which
compares each segment of one curve with each segment of the other, O(pq) line segment intersections, so it
is important to find better ways of doing the operation.

Preparata and Shamos present an algorithm to find &l intersections among n line segments by per-
forming a plane sweep along the x-axis. At any point on the x-axis, a vertical line imposes a total order on
those line segments it intersects. This order is recorded in the sweep-lipe status. As the vertical live sweeps to
the right from intersection point to intersection point, new line segments may be added to the ordering, and

old ones deleted, but if any adjacent pair of line segments changes order, which is detected by a change in the
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sweep-line status, an intersection of those segments must have occurred. Thus, any line segment which is added
to the ordering is checked for intersection with the segment immediately above and below it by checking if
the relative order changes at the point along the x-axis where the first of the two segments will be deleted. This
approach can detect k intersections among n line segments where nis p+q in time O((n+k) log n). In our domain
however, any two komogeneous-behavior-region boundaries will intersect in at most one point, because-when
any two boundaries intersect, a third boundary will begin and the other two will end. Therefore we could use
a simplification of the above algorithm which will operate in O(n log n) time. [Ref. 8]

Intersection calculation for piecewise-linear curves with monotonic curvature can exploit these
properties. Several algorithms of uncertain worst-case complexity seem to provide good empirical results. One
in particular [Ref. 9] proceeds by constructing, in O(p) time, a bounding box for the first piecewise linear
curve, and then checking, in O(q) time, which portion of the second curve, if any, intersects the bounding box.
The intersecting postion of the second curve usually contains only a small fraction, call it ki, of the whole
curve, although it is at this point that the analysis becomes imprecise because k; does not depend on p or q,
but on the curvature and relative positions of the two curves. In any case, the pext step is to reverse the roles
of the two curves and create another bounding box about the k1q line segments of the second curve, in O(k1q)
time. The first curve is intersected with the new bounding box in O(p) time, finding kap segments which
traverse the new box. The algorithm proceeds recursively as above, terminating when one of the bounding
boxes contains only one line segment. At this point, the next check of the other curve will yield the exact in-
tersection point. A rough approximation of the time complexity of this 2.;gozithm, if it is assumed for simplicity
that at each stage the size of the curve is reduced by the same fraction k, is T = ((1+k)q + 2p)/(1-k) + 1. Thus
this algorithm has, assuming O<k<1, time complexity O(q+2p) = O(q+p) = O(n). This algorithm will not con-
verge if at any stage the bounding box of each partial curve completely contains the other partial curve. But a
simple check during each iteration to ensure that the sizes of the two curves are in fact decreasing will allow
the method to proceed if it is converging. If it fails this test, a full O(pq) test of the two curves can be used in-
stead.

6. Voronoi Diagrams
A technique in computational geometry that has been of use in some algorithms pertaining to op-

timal-path maps is Voronoi diagram construction [Ref. 8). A Voronoi diagram Vor(S) with respect to a set of
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points S in a plane is the partition of the plane such that each region contains the points with the same nearest
peighbor in S. Figure 5 shows a typical Voronoi diagram. Ope method for constructing shoriest-path maps
(i.e., an optimal-path map for binary terrain), uses an extension of Voronoi-diagram methodology to plot ap-
proximations of the boundaries between homogeneous-behavior regions [Ref. 4]. It reduces the problem of
constructing the planar partition to that of finding a Voronoi diagram for the vertices of an obstacle, where the
costs of optimal paths from each vertex is known. Instead of bisectors between two vertices which are straight
lines exacily half-way between them as described below, this method constructs bisectors which are either
lines or hyperbola branches, depending on the nature of the paths from the two vertices. Then the Voronoi
diagrams of single obstacles are merged to form the complcte OPM.

Some observations about Voronoi diagrams lead to an initial construction method. Between two
points P; and P2 in the plane, the set of points closer to Py than to P2 are the points in a balf-plane containing
P defined by the perpendicular bisector of the line segment P1P2. Among a set S of n points in the plane, the
set of points closer to a point P; than to any other point in S is the intersection of n-1 half-planes each contain-
ing P; defined by the perpendicular bisectors of the Iine segments P;Pj. From this observation, a bnute-force
method of constructing a Voronoi diagram would be simply to construct each of the n polygons about each
point in S. Since n balf-planes can be intersected with each otber in O(n log n) time by a divide-and-conquer
approach, this approach takes time o(@? log n). [Ref. 8]

A more efficient approach for constructing Voronoi diagrams which also uses the divide-and-con-
quer paradigm can be summarized as follows. First, partition S into two sets S1 and S2 of roughly equal size
according to whether the x-coordinate of each point is less than or greater than the median x-coordinate of
points in S. Then, construct Vor(Sy) and Yor(S2) recursively, and finally, merge Vor(S1) and Vor(S2) to ob-
tain Vor(S). Partitioning S takes O(n) time for a set S of size n using a standard median-finding algorithm and
the merging step takes O(n) time. If the entire algorithm can be performed in T(n) steps, the construction of
both subordinate Voronoi diagrams in step two takes approximately 2T(n/2) time. So the recurrence relation
T(n) = 2T(n/2) + O(n) describes the aigorithm, which when solved gives that T(n) is O(n log n).

The merging step is the heart of the algorithm, and is accomplished as follows. Because the map is

partivioned such that Sy and Sz will lie on opposite sides of a vertical line, it can be shown that there is a chain
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G, i.e., a sequence of conoected line segments, which is monotonic with respect to the y-axis, (i.e., no two
points of the chain have the same y-coordinate) that also partitions the plane with Sy and S2 on opposiie sides
of G such that the union of the portion of Vor(S1) which is left of ¢ and the portion of YVor(S2) which is right
of G yields Vor(S). In fact this chain O can be constructed in linear time, so the recurrence relation stated
above holds, and the construction of a Voronoi diagram can be dope in O(n log n) time. [Ref. 8]

Generalizations of Voronoi diagrams have been presented which partition the plane into sets of points
closest to a set of line segments [Ref. 10], or which base their distance function on metrics other than the
Euclidean metric {Ref. 11]. Since OPMs for homogeneous-cost areas can be thought of as Voronoi diagrams
with a different metric for each homogeneous-bebavior region, the latter work seems promising. Curremly,
however, only several simple metrics such as L1 and Loohave been considered, so more research in this area
is necessary before CPMs of the type we are considering can be constructed with this approach. Weighted
Voronoi diagrams {Ref, 12] assign a weight to each point about which regions are computed. This concept
might appear useful in cosstructing OPMs, but is not. Instead it applies to a problem in which a mobile agent
travels at different speeds depending on which terrain-feature vertex it just crossed.

What is needed in constructing OPMs for the binary case is a type of generalized Voronoi diagram
in which the weight is the cost-rate of the region in which an obstacle vertex lies, and an offset of the initial
weight at the vertex represents the cost of the optimal path from the vertex. This iz, in essence, what the algo-
rithm of Aronov [Ref, 13] computes. This algorithm allows points in the Voronoi set to be given an initial of-
fset weight. Knowing that bisectors between such points are hyperbolas (or in the degenerate case, lines), they
can be plotted just as in the basic Voronoi diagram algorithm. The key element of the method is the proof that
a dividing chain can be constructed between two Voronoi diagrams as discussed above, which now can con-
tain hyperbola segments as well as line segments. This allows smaller generalized Voronoi diagrams to be

merged into larger ones, which is the foundation of the divide-and-conquer approach used.

C. DEFINITIONS OF RELEVANT FREE-SPACE PATH-PLANNING PROBLEMS
This thesis addresses problems where the mobile agent is of negligible size with respect to the surround-

ing terrain, where terrain is two-dimensional free space with fixed terrain features, where the environment is
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stable and knowledge about it is complete, and where the optimality criterion is to minimize a cost function
which is linear in path length.

A simplified version of this problem has been called by Lozano and Wesley [Ref. 1] and Brooks [Ref.
14] the FIND-PATH Problem, and by Mitchell [Ref. 15] the OBSTACLE-AVOIDANCE Problem. This
simplified problem seeks any feasible path in terrain consisting of impassable obstacles on a homogeneous-
cost background. An important extension to the FIND-PATH Problem includes the optimality criterion that
the resulting path be the shortest among all feasible paths. It is called the OBSTACLE-AVOIDANCE
SHORTEST-PATH Problem, or simply the SHORTEST-PATH Problem.

OBSTACLE-AVOIDANCE SHORTEST-PATH Problem: Given a mobile agent A of negli-
gible size with respect to the environment, an environment E consisting of impassable obstacles at
fixed and known locations on a homogeneous-cost background, and motion objective O consisting
of the translation of A to a specified goal point in the environment, find a continuous path 7¢ for A
amidst E that achieves objective O such that its lengthis minimal among all feasible paths, or report
that no feasible path exists.

Realistic terrain for large-scale cross-country path-planning can rarely be modelled as binary (i.e.,
obstacles on a homogeneous-cost background). A more useful assumption is that terrain can be modelied as
homogeneous-cost regions. The map is consists of regions, each assigned a value representing the cost rate to
the agent to traverse the region. The weighted-regicn problem is a generalization of the obstacle-avoidance
shortest-path problem which defines terrain as homogeneous-cost regions.

WEIGHTED-REGION Problem: Given a mobile agent A of negligible size with respect to en-
vironment E, E consisting of a partition of the plane into fixed homogeneous-cost regions of known
position, and motion objective O consisting of the translation of A to a specified point in environ-
ment E, find a continuous path ¢ for A amidst E that achieves objective O such that the path in-
tegral of the cost is minimal, or report that no feasible path exists.

The U.S. Amy Engincer Waterways Experiment Station, the U.S. Amy Engineer Topographic
Laboratories (ETL) and the Defense Mapping Agency (DMA) currently can produce such cost-rate maps of
environments E using a program called Army Mobility Mode! (AMM), for portions of the earth for which
digitized terrain data is available, This data includes not only elevation data, but cultural, vegetation, and soil
well, and must curcntly be collected inpant manually [Ref, 16]. The cutput of AMM isamap in which
terrain is subdivided according to the maximum speed with which the given vehicle could be expected to

traverse the terrain.
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If an application will require repeated solutions of the shortest-path nr weighted-region problems, it may
be more efficient to construct an optimal-path-map which represents optimal paths to a given goal point from
all start points in the plane. If the output map represents solutions to the shortest-path problem, it is called a
shortest-path-map. Some authors use shortest-path-map to refer to maps of the weighted-region problem as
well, allowing the word shortest to mean shortest with respect to a specified cost function. We prefer the term
optimal-path-map, however, to emphasize its basis in the weighted-region problem.

FIXED-GOAL OPTIMAL-PATH-MAP Problem: Given mobile agent A of negligible size with
respect to environment E, E consisting of a partition of the plane into fixed, homogeneous-cost
regions of known position, and a set of motion objectives © which are to translate agent A from
each of the continuum of start points S in the plane to a goal point G, represent the sct IT of con-
tinuous paths for A in E that achieves objectives O; in © such that the path integral for each 7; is
minimal over all paths from start point S; to G, or report that no feasible path exists.

D. TYPES OF PATH ERRORS
Several classes of errors may occur in algorithms which look for optimal paths. Each algorithm is based
on a model of the path-planning domain with its own representation of reality, and operations manipulate that
representation to produce a sciution. For example, terrain in some models is represented by imposing a grid
on the map and assigning a cost to each cell of the grid, while in some models terrain is represented by polygons
with an assigned cost. Errors may occur either because of inaccuracies in operations within the model or be-
cause of inaccuracies in the model compared with the real-world domain. The first class below are errors of
the former type, while the second and third classes are errors of the latier type.
1. Cost of Model Computed Path versus Cost of Model Optimal Path
Path-planning algorithms execute within the context of their model of real-world terrain. If an algo-
rithm produces a solution path which has a computed cost greater than the minimum cost of some other path
represented within the model, the algorithm has preduced amodel sub-optimal path. Such asolution may occur
cither intentionally or unintentionally. Some algorithms terminate when a candidate solution is guaranteed to
be within some bound of the true model optimal solution, thus saving processing time at the expense of ac-
cura
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an algorithm which produces solutions with this kind of error is called simulated annealling. It uses stochas-

tic methods to determine wlien a candidate solution has a high probabitity of being good enough (Ref. 18). Er-
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rors of this type also occur because of numerical errors in the mathematical operations performed by the al-
gorithm, Standard numerical analysis techniques can be used to study these errors and attempt to reduce them.
2, Cost of Model Optimal Path versus Cost of Real-World Optimal Path
When the cost of the optimal path within the model is different from the actual cost of a path between
the same two points in the real world, an error of the second class has occurred. Even the actual measurement
of a path cost is only an approximation of reality, so any model produces at least some small error of this kirxl.
The amount of this kind of error produced is an important consideration in choosing among algorithms. For
example, as discussed in Section E below, the wavefront propagation algoritbm may produce solutions which
are optimal in its grid-based model, but which have as much as 7.6% greater cost than an actual path between
the same two points as measured in the real world.
3. Location of Model Optimal Path versus Location of Real-World Optimal Path
A mode! optimal path could still be a valuable representation of a real-world optimal path despite a
larger cost than the true optimal cost if its qualitative behavior was similar enough to the path it represented.
But algorithms may produce solutions which follow quite different routes than the real-world optimal path.
As discussed by Mitchell and Kizrsey [Ref. 19], the grid-based model upon which wavefront propagation (see
Section E below) is based allows for multiple paths with the model optimal cost, so only the details of the al-
gorithm implementation determine which one is reported as the solution, and that reported solution may dif-
fer markedly from the true optimal path. This type of error may or may not be important depending on the

application to which the results will be applied.

E. RELEVANT OPTIMAL-PATH PLANNING RESEARCH

A taxonomy for categorizing free-space path-planning methods is presented in Figure 6. Algorithms for
fre -space path planning gencrally transform an infinite search space into a finite one by eliminating all but a
finite number of candidate patbs, and then searching this finite space using standard techniques such as branch-
and-bound or A* search. Two distinct ways used to effect this transformation to a finite search space are map

discretization and spatial reasoning.
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1. Map Discretization - Wavefront Propagation

Map discretization methods approximate the terrain by imposing a tesselation on the map and
categorizing each cell according to the terrain it overiays, aud allow travel only between centers of grid cells.
Alternate representations are possible, for example, where travel is allowed between comers of cells. Since
there are a finite number of cells, there are a finite, though large, number of candidate paths (assuming cycling
is prevented). A method popular for its simplicity is called wavefront propagation (see Figure 7) [Ref. 15},
{Ref. 20). The terrain is appmxima-ted by a square tesselation of the map, and paths are approximated by al-
lowing motion only from the center of a cell to the center of an adjacent cell. Eight-neighbor adjacency is
usually used, meaning that from a cell, the agent may move to any of the four perpendicularly adjacent cells
or to any of the four diagonally adjacent cells. Because of (he restrictions on directions of movement, eight-
neighbor wavefront. propagation has as much as 7.6% inaccuracy in that a reported solution may cost as much
as 7.6% more than the real-world optimal path [Ref. 20]. Normally Dijkstra’s algorithm (brand>-and-5ouod
search) is used to expand in all directions from the start point until the goal is first reached. The name wavefront
propagation is used because of the analogy of the expansion of a circular wave in water.

The implementation of wavefront propagation reported by Richbourg [Ref. 21] is a variation of
Dijkstra’s algorithm which models the expansion of the wavefront explicitly. The basic mechanism is that time
is incremented in fixed units, and at each time increment the wavefront is propagated outward as far as it can
travel through each cell currently on the wavefront. Each cell which is reached by the wavefront is added to
the wavefront list, and when the cell’s cost has been decremented below zero it is dropped off the wavefront
list. During each iteration, cells through which the wavefcont has fully passed will propagate the wave to each
of their neighbors. If the neighbor cell has not yet been reached by the wavefront a back-pointer is set back to
the cell on the wavefront and the neighbor cell’s cost is decremented according to how far th2 wavefront can
travel throughit in a unit of time. If the neighbor cell has already been reached by another cell on the wavefront,
no action will be taken unless the neighbor cell's cost could be decremented further by the currently propagat-
ing cell than it was decremented by the previous cell. In that case, the pointer is changed to point to the cur-

rent cell and the cost is set accordingly.
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If cells are square and have unit dimensions, time could be advanced in increments such that it would
take 1 time unit for the wave to pass through a cell of unit cost in an ¢rthogonal direction and V2 time units
in a diagonal direction. For a cell with a cost of c, the wave will take ¢ and ¢\ 2 time units respectively. Al-
temnately, we will adopt the convention that time is incremented in units of "\"5, so that the wave will progress
‘f?/c units of distance through a ceil of cost c in the orthogonal direction in one iteration, and /c distance in
the diagonal direction in one iteration. This convention provides that, for cells of integral cost, diagonal ex-
pansion of the wave will always end inside the cell or at its edge, never overflowing into the next cell, so it is
oaly in the orthogonal direction that it is necessary to check for overflow. Thus we decrement the original cost
associated with a cell by 1 or by V7 ateach iteration, and when the remainirng cost is Jess than zero, we know
that the wave has passed completely through it. Figure 7 illustrates the mechanics of the wavefront propaga-
tion algorithm. The figure shows a sequerice of snapshots of the algoritam, where the remaining cost of each
cell is noted inside the cell, and arrows represent pointers to each parent cell. The arrows are solid when the
cell has been added to the wavefront, and dotted when the cell is not yet on the wavefront but has a back-
pointer assigned.

For a map of m cells, the worst-case time complexity of Dijkstra’s algorithm is O(m log m), [Ref.
15), or if we consider the two-dimensional nature of the input map, say of size n by n cells, the complexity is
om? log n). This version does not depend on the costs of cells on the map. But for the vaisicn used by Rich-
bourg, time complexity is also a function of initial costs of the cells. Each cell will remain on the wave{ront
until its initial cost ¢ is decremented below zero. The cell’s cost wili be decremented by 1 ot V2 ateach
iteration, so each cell will remain on the wavefront for O(c) iterations. Each iieration that a cel! is op-the
wavefront, its eight neighbors will be checked to see if the shortest path yet to the neighbor cell is through the
cell being considered, or through some already-processed cell. Thus in the worst-case where all cells have a
cost Cmax, if we assume that there is some upper bound o the cost of cells, the worsi-case time complexity is
G(Cmax m). Interms of an n by n input map, the worst-case time complexity is G(Smax nz). We must for theoreti-
cal reasons make the assumption that there is an upper bouad on the magaitude of Cmax, because if Crax is un-
bounded, and as usual is represented in 1og cmax bits, we bave that the size of the input map is I = O og Cinex),
or2' = Cmax. Thus the wors!-case time complexity would be O(Z’m). As explained in [Ref, 22], this type of al-

gorithm has pscudo-polynomial time complezity, i.e., it is polynomial if ihe input size is bounded, but ex-
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ponential if the input size is allowed to be unbounded. Both versions of wavefront propagation have space
complexity of O(m).

Dijkstra’s algorithm examines paths in all directions from the start poit, regardless of which are like-
ly to lead to the goal point quickest. But extending the algorithm t» A* search by introducing an evaluation
function gives large increases in execution speed by focusing the search on paths which seem to be proceed-
ing in the best directions. The evaluation function used in the A* version of wavefront propagation measures
the Euclidean distance from the cell currently being considered to the goal cell. Mitchell and Kiersey [Ref.
19] report an increase in speed for A* search over Dijkstra’s algorithm of 1.5 to 20 times.

Increased resolution of the tesselation will not reduce the worst-case inaccuracy of reported solutions
below the 7.6% upper bound. This inaccuracy, called digitization bic:, arises because of the discrete ap-
proximation of paths. The only way to reduce the upper bound on error caused by digilization bias is to in-
crease the number of possible directions the mobile agent is allowed to travel. Sixteen-neighbor wavefront
propagation, for example, aliows paths between 2 cell a4 the sixteen cells which are separated from it by one
cell. Richbourg [Ref. 2(] showed how sixteen-neighbo: adjacency could decrease the inaccuracy to ap-
proximaltely 1.9%.

Not only dees digitization bias lead to inaccuracy, it also means that multiple solution paths couid be
reported depending on implementation details of the algorithm. Path representations approximate the true op-
timal path in the actual terrain by connected line segments which lie in allowed directions. So a true optimal
path which for example lies at 2 22.5° angle with the Borizontal could be represented by one which starts in a
45° direction, and then finishes in a horizostal direction, or it could be represented by one which altemates
many tintes between sinali 45° line segswents and horizontal live segments, somewhat like computer graphics
foutines represeni ines with sets of pixels. The iatter representation is to be preferred because it more close-
iy approximates the true optimal path, and soms rescarchers bave proposed ways to augment wavefront
propagation algorithms o favor paths which have more regular turns, so as to better approximate line seg-
ments. {Ref. 19), [Ref. 20], [Ref. 23], [Ref. 24), {Rel. 25]

Mitchei! and Kiersey {Ref. 19)discuss an implementation of wavefront propagation called BITPATH
which paitially compensates for digitizatior bias by modifying the w ay in which gath disinnces are computed.

Vossepoel asd Snieulders [Ref. 26) developed anestimate for the actual distasice over a tris ptimal path given




adigitized approximation which lowers the estimate each time the approximation path turns, based on the idea
that each turn point suggests overestimation of Euclidean distance. BITPATH incorporates this estimate as
the cost function of A*, i.e., the value assigned to a cell to represent the cost of the best path from the start cell.
They claim a significant improvement in BITPATH s ability to find a solution which not only has minimum
cost of all possible paths, but also lies close to the true optimal path. [Ref. 19]

In an attempt to reduce the dependency of accuracy on resolution, data representation schemes that
use multiple resolutions have been introduczd which use hierarchical algorithms which are generalizations of
wavefront propagation [Ref. 27]. One such scheme uses quad-trees to represent larger homogencous areas
with single celis [Ref. 28]. With this approach, rectangles are inscribed within bomogeneous-cost regions of
the input map, and then successively smaller rectangles fill out the shape of the regions. This representation
is then searched much the same as in wavefront propagation.

A parallel processing approach to wavefront-propagation path planning bas been implemented ia sup-
port of the DARPA-sponsored autopomous land vehicle built by Martin Marietta [Ref. 29]. Multiple proces-
sors are utilized to sweep horizontal bands of the map, at each cell replacing the current cost of its neighbors
if the current cost of the cell plus the cost to move to the neighbor is less than the neighbor’s current cost. Mul-
tiple sweeps are employed until the cost values stabilize. Richbourg [Ref. 20] suggests an altemative based on
mesh-connected architectures in which computational elements in the architecture would model cells in the
map, yielding an O(n) algorithm, and Jorgenson [Ref. 30] presents a wavefromt propagation implementation
on a peural-network machine,

2. Spatial Reasoning Metheds

Spatial reasoning uses principles about how optimal paths must behave in the presence of terrain fea-
tures to constrain the search space for optimal paths. A simple example of this type of reasoning is that op-
timal paths are always straight lines across homogeneous terrain, and in the case of binary terrain (obstacles
on a homogencous-cost background), turn only at obstacle vertices (see Theorem I-2, Appendix A). A more
general type of discretization than that used by wavefront propagation takes place when terrain features are
modelled using polygons. Hcre, error in model optimal paths versus real-world optimal paths can be much

less than with rectangular tesselations, but since algorithms which use this type of discretization have com-
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plexities which depend on the number of terrin-feature vertices in the map, there is a trade-off between ac-
curacy of representation and speed of execution.

Path-planning methods have used at least four distinct techniques which can be considered spatial reason-
ing techniques, with many algorithms appealing to more than one of the techniques. They are visibility-graph
methods, the Snell’s Law local optimization criterion, the continuous-Dijkstra paradigm, and methods using
optimal-path maps.

a. Visibility Graphs

Visibility-Graphmetbods [Ref. 1] solve the polygonal obstacle-avoidance shortest-path problem
(binary terrain), constructing a graph where each of the n obstacle vertices plus the start and goal points are
nedes, and undirected arcs connect nodes whose vertices are intervisible, i.e., can be connected by a line seg-
ment which does not intersect any obstacle edge. Because of the spatial reasoning principle about binary ter-
rain stated above, it is assured that every segment of an optimal path will occur in the visibility graph, so to
find an optimal path it is suificient to search the graph using branch-and- bound search.

Several algorithms have been given to construct the visibility graph. The naive algorithm checks
every pair of vertices against every edge to see if the line segmient connecting them intersects the edge. Since
there are O(nz) pairs of vertices and O{n) edges, this bruie force algorithm bas worst-case time complexity
0(n3). Lee [Ref. 31] and Mitchelf {Fef. 32] explain an O(n2 fog p) algoritbm which begins by constructing for
each vertex a list of the othier vertices sorted acconding to the beading of the line between them in O(n2 log n)
time, and then for cach of the n sorted sets, doing an angular swesp checking for intersection against the closest
obstacle edge. Welz] {Ref. 33] z:d Asano [Ref. 34] used the fact that n sorts can be done in O(nz) time to build
an O(n?) visibility gmph construction algorithm. Ghosh and Mount [Ref. 35] give an algorithm to compute
the visibility graph of » disjoint line scgments in time O(e + o log n), where ¢ is the number of edges in the
visibility graph (an output-sensitive complexity). Since e may be as small asnor as large as nz. this algorithm's
worsl-case time complexity ranges from Ginlogn) to O(nz) depending on the size of the visibility graph.

Once the visibility grash has been constructed, Dijkstra’s algorithm or the special case of it called
A* (see Section A), muy be used to search for the shortest path from the start to the goal. The worst-case time
complexity of Dijkstra’s algorithm is given by Aho, Hopcroft, and Ullman as O(e log n) [Ref. 36]. Again, be-

cause of the mnge of e, thus means that Dijkstra's algorithm is, in the worst case, O(n2 log n), or with a sparse
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visibility graph, O(n log n). A*, an "informed" version of Dijkstra’s algorithm, has time complexity of the
same order class in the worst case [Ref. 15], although actual implementations should show a significant em-
pirical superiority of A*. Thus, the shortest-path problem can be solved by a visibility-graph approach in O’
log n) time.

For the variation of the weighted-regicr nroblem {~r generalization of the shortest-path problem)
given by Rowe [Ref. 2] which considers roads and rivers as well as cbstacles, a visibility-graph-infiuenced
approach is used to transform the search space to a finite one. Reasoning about how optimal paths must be-
have in the presence of roads and rivers leads tc the conclusions that a path will enter or leave a road at only
one critical angle, and that paths either cross a river without changing heading, or go arouod river-end vertices
as they would an obstacie vertex, A visibility graph is constructed using as nodes ail obstacle and river ver-
tices and start and goal points; zoads and rivers are not considered to obscure visibility. Additionally, line seg-
ments from each node are constructed which intersect each road at the critical angle. If the points are otherwise
visible, the road-intersection point is added as a node and the graph refiects that the poiats are connected. Fur-
ther, all nodes which lie on contiguous road segments are connected. This graph is then scarched using
Dijkstra’s or A* algorithms as above. Figure 8 shows the edges of an 2zxample generalized visibility graph. In
this figure, solid lines represent roads, dotted lines represent rivers, and filled polygons represent obstacles.
Narrow dasbed lines represent V-grap  edges and he thick dashed line represents the optimal path from start
1o goal points. Similar results for lipar features are reported by Gewali et al. [Ref. 37]

b. Snelt’s Law Local Optimality Criterion

Optimal paths in the weighted-region domain obzy 20 apalogy to Snell's Law of Refraction in
optics [Ref. 20}, [Ref. 3], [Ref 38). Spell's Law is based on Fermat’s Principle which says that light secks the
path of minimum time. Fermat’s Principle has an analogy in the weighted-region probiem, since time is a cost
proportional to distance travelled in a homogencous-index region. Thus optimal paths follow Spell’s Law.,

Snell’s Law for Optimal Paths: An optimal path passing through an edge between two regions
with costs-pes-unit-distance c1 and c2 obeys the relationship cy sin 81 = c2 sin 02, where 0y and 02
are the angles of incidence and refraction respectively, i.e., the angle from the path in the first region
to a line normal to the edge, and the angle from the path in the second region to a line nomal to the
edge. (See Figure 9.)
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Figure 8
Graph for RRR Algorithm
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Note that Snell’s Law is a criterion for local, not global, optimality; a non-optimal path may obey Spell’s Law
at each edge crossing. Therefore, its usefulness is in constructing candidates for global optimality.

The analogy to Snell’s Law applies to crossings with an angle of incidence and refraction such
that ©1and 02 are both less than or equal to 90°. In the path-planning domain optimal paths cannot occur
that have angles of incidence greater than a critical angle which is 0, = sin™ ci/cj, where ¢ < cjand cjis the
cost of the region on the incidence side of the edge. For example, in Figure 10 an optimal path may go from
point S to any point to the left of point A, but may not go immediately to its right, because the angle O that
line AB would form with edge PQ of the high-cost region would exceed Oc. This is called tota! internal
reflection, in optics. Another example of such bebavior is found in Figure 11, where a path SABG follows
Snell’s Law making an angle exactly the critical angle at point A and then at B.

In Figure 12, paths just to the left of SV will be refracted according to Spell’s Law as is path
SVA, while paths just to the right of SV will be refracted as is path SVB, but paths which go through point V
may lie anywhere within the wedge formed by AVB. If we consider that the edges which meet at point V are
actually continuously curved there, Snell’s Law will apply as the local curvature increases to infinity. The
same bebavior happeas in Figure 13, at vertex V of an obstacle.

Finding an exact Spell’s-Law path between two points through a sequence of edges requires an
iterative search. Richbourg [Ref. 20] and Mitchell [Ref. 15] both discuss the lack of a closed-forn solution for
the problem of finding the Snell’s-Law path between two points. But since it is an easy task to trace a Spell's-
Law path from a point with a given heading, both conclude that an iterative search is the best approach. Rich-
bourg studies the effectiveness of four techntques for finding, to within a given error, a Spell's-Law path across
one edge. He used experiments applied to bisection search, golden-section search, false-position search, and
a modification called heuristic false-position search, and found that the latter converged more than twice as
fast as any of the others on the average, and also had the least standard deviation of the four methods. His
heuristic false-position method attempts to avoid the situation where the search approaches the solution from
the same side at each iteration, since false-position tends to converge more quickly when the solution is brack-
eted.

Mitchell’s algorithm uses anumerical routine to approximate the Snell’s-Law path across nedges

which is of a time complexity that he calculates is bounded by 0(°L), where L is a measure of the precision
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Figure 10
Snell's Law Exampic 1
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Figure 12
Snell’s Law Example 3
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Figure 13

Snell’s Law Example 4
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of the problem instance. This routipe is used because of its proven worst-case speed, but he also reports a coor-
dinate descent method for solving a Snell’s-Law path across several edges which is said to have fast empiri-
cal convergence, This method uses as a starting path a sequence of line segments between start and goal points
through the midpoint of each edge. It then successively adjusts each crossing point in constant time to satisfy
Snell’s Law with respect to its two neighber crossing points, iteratively applying these adjustments until the
path is within a specified error of the goal.

¢. Continuous-Di}kstra Paradigm

Path-planning methods for the weighted-region problem have used one of two similar ap-
proaches, both relying on Snell’s Law and related properties as discussed above. Mitchell’s algorithm uses
what he calls the continuous-Dijkstra paradigm, because of its analogy to the discrete Dijkstra algorithm [Ref.
3), while Richbourg’s algorithm uses recursive wedge decomposition [Ref. 20}, [Ref. 21]. Whereas Dijkstra’s
algorithm must be used over terrain approximated by map discretization, the continuous-Dijkstra and the recur-
sive-wedge-decomposition paradigms are used over termin in which terrain features are represented by
polygons or piecewise-linear curves.

The continuous-Dijkstra paradigm, analogously to searching a finite graph for the next closest
node in Dijkstra’s algorithm, searches in a concentric plane sweep outward from the start point, processing
each temain-feature vertex as the sweep reaches it. The algorithm requires the triangulation of the terrain map,
a task for which standard algorithms are available from computational geometry. Each vertex has associated
with it a label which represents the cost of the best path yet found to it, just as in the discrete Dijkstra algo-
rithin. Additional points, called frontier points, also have labels associated with them. They are points in the
interior of an edge at which critical reflection occurs (see above).

The key data structures for Mitchell’s algorithm are first, a list of subsegments of terrain-feature
edges called candidate intervals of optimality, and second, a priority queue called the event queue after the
terminology used in the plane sweep paradigm. Candidate intervals of optimality are the extent of an edge over
which an optimal path could possibly lie by the constraints of Snell’s Law. Intervals include information about
the root, or last previous vertex through which the all optimai paths which cross the interval lie, and about the
paths from this root to either end of the subsegment interval. The event queue contains those points which are

end points of some candidate interval, or are frontier points in the interior of an interval.




At each step of the algorithm, the point on tbe event queve with the smallest cumulative cost
from the start point is chosen. If it is a frontier point, then the candidate intesval is said to propagate. In other
words, more candidate intervals on other edges are found each of whick includes an edge subsegment to which
optimal paths could arrive through the initial interval. The appropriate points bave their costs compnted and
are added to the event queue. When the event queue becomes empty, the algorithm terminates, and the goal
point has been labelled with its optimal cost. The list of candidate intervais holds, at any point inthe algorithm,
the best path or set of paths so far from the start point to the interval, so the interval which is the goal point is
found in order to retrieve the optimal path. This algorithm has at most O(n3) event points, and uses the O(n‘L)
routine discussed above to find a Snell’s-Law path between two points, and so has a worst-case time com-
plexity of O(n7L), where n is the number of terrain-feature vertices and L is a measure of the precision of ibe
problem instance.

Richbourg’s algorithm uses A* search to select a group of patls for refinement which offers the
best hope of containing the optimal path from the start point to the goal {Ref. 20]. As refined Rowe and Rich-
bourg [Ref. 39], a well-behaved path subspace (WBPS) is defined as a set of paths which cross the same ter-
rain- feature edges and vertices from the start to the goal. A wedge is a partial WBPS which is a set of paths
crossing the same edges and vertices from the start point to some intermediate point or edge. Refining a wedge
means finding within the wedge the nearest intermediate point which has not yet been considered, finding a
Snell’s-Law path to that point, and splitting the wedge into three sub-wedges based on the cases which arise
from Snell’s Law. These three wedges are added back to the A* agenda for further consideration, Two of the
three wedges are those consisting of paths which pass to the "left" and "right" of the point at which splitling
occurs, while the middle wedge is constructed based on the possible behavior of paths emanating from the
point. The tenin recursive wedge decomposition refers to the successive splitting of wedges as they are selected
from the A* agenda and refined.

The search space for recursive wedge decomposition is a known feasible start-to-goal path and
aset of wedges with associated lower-bound values of cost function plus evaluation function for each wedge.
These lower-bound values represent the lowest possible cost for a path within the wedge. The known feasible
path is replaced whenever a better path is found, so that it is always the best known path. The single operator

for state transformation is wedge refincment. The algorithm uses a different termination criterion than that




normally used by A* in path-planning applications. Normally the search can stop when the firs: element on
the agenda is a complete solution, because the agenda is ordered by increasing cost-function plus evaluation-
function values, and for a complete path the evaluation function equals zeto and the cost function is the ac-
tual cost from start to goal. However, in this search space, the elements on the agenda ave wedges, niof patbs.
The search terminates when the best wedge on the agenda (and betive all other wedges on the 2genda as weli)
has a cost-function plus evaluation-function value that exceeds the upper-bound cost of the current best feasible
known path, or when the agenda is empty. In either case the least-cost known path is the solution. Wadges are
pruned, or emoved from the search space, according to a set of criteria based on Snell’s Law and other spa-
tial reasoning. An implementation of Richbourg's recursive-wedge-decomposition algorithm is reported to
have empirical performance which strongly suggests an O(nz) average-case time complexity, where n is the
number of terrain-feature vertices. Worst-case time complexity was repoited to be O(nlnz) [Ref. 391.

The two algorithms are quite similar in some respects. The candidate interval of the continuous-
Dijkstra algorithm along with its associated data about boundary paths corresponds to the wedges of the recur-
sive-wedge-decompositivn algorithm, and propagation of intervals corresponds to refinement of wedges. The
same propertics of Snell’s Law refraction and critical reflection are used in determining bow to refine wedges
(propagate intervals). However, there are differences of emphasis. The focus of the continuous-Dijkstra algo-
rithra seems to be finding apolynomial-time worst-case algorithm, while the A* search of the recursive-wedge-
decomposition: alyorsithm focuses on average-case performance. The continuous-Dijkstra aigorithm requires
a triangulation of the input map, a time-consuming preprocessing step which nevertheless does not raise the
worst-case time order of complexity, while the recursive-wedge-decomposition algorithm takes as input amap
of polygonal terrain features. The recursive-wedge-decomposition implementation reported in [Ref, 21] was
used in our research for initialization in our Chapter VI algorithms.

A generalization of the weighted-region problem allows anisotropic costs in regions, that is, costs
which are 2 furiction of the direction of travel of the mobile agent, for example, in steeply sloped terrain. Ross
{Ref 40] solves the anisotropic weighred-region problem using a variation of recursive-wedge decomposition.
Based on the effects of gravity, friction, and maximum force which can be applicd by the agent, there arc
several sets of impermissible headings which may constrain iravel across a polygonal region. A range of uphill

headings may be ruled cut by maximum force available, loss of traction, or catastrophic overtum, and a range
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of sidesiope headings may be ruled out by catastrophic overtur considerstions, Additional optimality con-
siderations include a range of downhill braking headings within which the agent mus! losc energy by braking,
and Snell’s Law for optimal paths as dzscribed above. Given these constraints, tivere ate only four ways an op-
timal path can cross an anisotropic region. This insight leads to an algorithra which recursively decomposes

groups of potentially optimal paths according to which terrain-feature vertices s edges they cross (window

sequences), and applies A* search 1o these groups of paths, using various prauing criteria to limit the search-

space.
d. Optimai-Path Maps

Several ressarchers have used optimal-path maps (CFMj, or as they ant commonly called with
respect to binary terrain, shiortest-path maps, as a means of golving the shortest-path, binacy-terrain probiem.
Lee and Preparata {Ref. 41] give an O(n log n) algoritim to constnuct an OFM for the special case that all
obstacles are paralle! line segments, and Reif and Storer [Ref. 42] give as O(mn + n Jog ) algorithm, whese
m is the number of obstacles and  is the number of obstack vertices. Mitcheli f{Ref: 4] gives an Ofkn logln)
algorithm for the-general case, where k is an output-sensitive parameter saitesvhat related 1o the density of
cbstacles in the plave.

The algoritlun of Lee aid Preparata uses the plane sweep prwdigm aud coartrcts both the op-
timal-path tree and the planar partition with coe sweep of the piane. Assuming withous Juss of generality that
the parallel Jinc-segment obstacles are verticat and the stast point is to the left >€alt obstastes, the sweep line

is also vertical and begins at the start point. The cbstacles are indexed by their x-cocrdinates, and the initial

event quene contains the x-coordinates of each obstacle, As the sweep line sixcounierz an obstarle, 5t locaies

the two endpoints in regions of the OFM so far construcied sod exteads the evtimal-path ine by inserting a
nede for each obstacte endpoint into the tree at the node associated with theze segions. ‘Then it constructs the
theec bisectors, or kemogeneous-bebavior regicn boundaries, which begin &t ¢ ¢hstacte, rwe of which are
rays ang onc of which is a hyperbola segmen. It updates a Jist of “sctive” blsectins by deleting previousty.-
{ound Hisectors which Intersect the current cbstacle, 2ud adds the new bisectors Je the Tist, Toen it andatos the
rvent quene hy inzestinig poinss of intersection of the new bisectors with way sther bizectors. Only the lefi-
mos! such intersection must be recorded. Ateach stage, ihe OFM is updated whs: both exdpoints of a bisec-

tor are found. [Ref. 41)

47




The algorithm due to Reif and Storer takes as input a triangulation of the obstacle edges, and
recursively processes these triangles to find shortest paths from the start point to each vertex of the triangula-
tion. The algorithm "grows" outward from the start point, coustructing a partition of the plane. The discussion
of this algorithm in Reference 42 is somewhat obscure, as it does not use the terminology of shortest-path
maps, and depends on other algorithms and data structures not fully explained in Reference 42.

A solution to the optimal-path-map problem which takes a different approach is presented by
Payton [Ref. 43]. It is built on the wavefront propagation algorithm, and consists of storing the back-pointers
for each cell. This ammay of pointers is called a gradient field, and provides information about which direction
a mobile agent should go from any point on the map in order to travel along an optimal path. This approach
could be used with other point-to-point path planners as well, although with greatly increased preprocessing
time, by simply running the path planner for a finely-grained array of start points, and storing the initial direc-
tion of the resulting optimal path for each run.

Mitchell’s algorithm introduces the concept of "generalized visibility” within the obstacle space,
and constructs shortest-path maps for each new level of visibility. This algorithm begins by computing the
visibility polygon from the start point, i.c., the polygon containir g all points in the map which are not occluded
from the start point by an obstacle edge. Tben it appeals to the algorithm for constructing gencralized Voronot
diagrams withi simple polygons due to Aronov [Ref. 13] which: takes into account that boundaries may be
hyperbolic or linear, depending on the costs of optimal paths from obstacle vertices. Using this generalized-
Voronoi-diagram concept, Mitchell's apiproach constructs a shortest-path map for the visibility polygon. Then,
the algorithm computes the second Jevel of visibility, that is, extends the visibility polygon to include all points
visible from any part of the iniz:xi visibility polygon. Again, it reduces the problem of extending the shortest-
pathmap to the problem of defining appropsiaie Vorenoi-diagram problems on simple polygoos. This process
continues iteratively until all obstacley have been {isuud by the generalized visibility process. [Ref. 4]

So essentially, Mitchelf’s algonithm Iy doing a cotcentric plane sweep (although not using this
terminology). where at each iteration, the nexs generclized visibitity polygon is found, a Voronoi diagram is
constructed for the obstacles in the polygon, and these Vorenoi diagrams ase merged with the Voronoi diagram
from the previous iterations. The computation of visibility frolygons does use the pixse sweep paradigm ex-

plicitly, sweeping a “gecdesic” (or optimal) path angularly about thie suut poini. In order to deal with several
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cases in which a single sweep would not correctly identify all the event points, two sweeps, ope in each direc-
tion about the start point, are done to compute each visibility polygon. This algorithm operates in O(n logzn)
worst-case time, where n is the number of obstacle vertices in the input map. [Ref. 4]

The focus of this dissertation is on the construction of a planar partition for the weighted-region
problem. In keeping with the convention discussed above of referring to solutions to the weighted-region
problem as optimal paths instead of shortest paths, we refer to such a partition as an opfimal-path map. Mitcbell
[Ref. 15], claims to have constructed an optimal-path map for the weigbted-region problem, but does not mes-
tion the task of constructing region boundaries. His algorithm appears to construct, instead, an optimal-path
tree, a necessary and tinie-consuming first step in constructing an optimal-path map, but gives little attention
to construaiion of the planar partition. This confusion may arise from the fact that in the binary-terrain domain,
construction of region boundaries is straightforward, a fairly insignificant part of the total problem, while the
added complexity of the weighted-region problem creates additional complexities in the characterization of
boundaries and the construction of the optimal-path map. In binary terrain, the standard Voronoi-diagram
methods which construct straight-line bisectors only need to be exiended to construct byperbola segments as
well, while in weighted-region terrain, such bisectors take on many different forms. Thus the problem of "defin-
ing the appropriate Voronoi-diagram problem", as Mitchell does in the binary case, is a much more difficult

one.
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i. MODIFYING WAVEFRONT PROPAGATION TO FIND SUB-OPTIMAL
SOLUTIONS TO THE OPTIMAL-PATH-MAP PROBLEM

A. OVERVIEW

Wavefront propagation is well-snited as a method for solving the fixed-goal optimal-path-map problem
(see Chapter 11, Section C for a complete description of this problem), if the inherent error is acceptable in the
application domain. The basic wavefront propagation algorithm can easily be extended by considering, for
each cell on the wavefront, whether there should be a boundary between it and its adjacent cells, using one of
the three definitions of "similar bel:avior”. What for the poiot-to-point problem was a disadvantage of
wavefront propagation, that the algorithm in its basic form searched blindly in all directions without regard to
the location of the goal, becomes an advantage for the optimal-path-map problem because the paths from each
cell in the map are available as a by-product of the algorithm simply by tracing the back pointers. Another ad-
vantage is that the asymptotic worst-case time complexity of the extensiop is the same as the basic algorithm.

In chapter II the path-generalizing function was defined in terms of "similar behavior” of patbs. In this
chapter we solidify the :meaning of "similar bebavior" to group paths in three different ways that make sense
for wavefront propagation, thus defining the path-generalizing function in three ways. The first way produces
boundaries between adjacent cells whose goal paths tumn &t cells which are not "equivalent”. The second way
uses a set of beuristics to group czlls whose goal paths converge. The third way groups cells according to
whether their paths tumn at thie same terrain-feature vertices and edges.

It might be possible to bypass the need for an optimal-path map altogether by simply storing back poiuters
for every cell in the map (for example, in the work of Payton discussed in Chapter II [Ref. 43], such a database
of pointers is called a gradisnt field). Given astart celi’s coordinates, the path to the goal could be reconstructed
by followipg the pointers back 1o the goal cell. There are two disadvantages to this method. First, the average-
case time complexity to reconstruct a backpath is O(n), for an input map of size n by n. Second, the storage

requirement for the optimal-path magp is o(n® ). To avoid these problems, we store an optimal-path map.
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B. MODIFYING THE PATH-GENERALIZING FUNCTION FOR WAYEFRONT
PROPAGATION OPTIMAL-PATH-MAP CONSTRUCTION
1. The Pure Version of Wavefront-Propagation Optimal-Path-Map Construction

The most natural description of a path is the list of all cells from start point to goal point. Requiring
two such path lists to be identical in order to represent "similar behavior” would result in every cell in the map
comprising its own homegzneous-behavior region. But it is uonecessary to include all cells in a path segment
which lie in on the same straight tine. So another definition of a path list is the list of cells at which the op-
timal path turns, or more precisely, the cells in the backpath of a start point for which each back-pointer of the
cell is in a different direction than the back-pointer of the cell’s parent.

This definition still indyces many distinct regions. A modification is to specify that two tum-point
cells on different backpatbs are considered equivalent if one of them lies on the first leg of the optimal-path
list which starts at the other tum-point. Thus, for example, the two cells (5,3) and (6,2) in Figure 7 would have
optimal-path lists [(5,5),(7,7)] and [(6,6),(7,7)]) respectively; cells (5,5) and (6,6) would be considered
equivalent because the optimal-pathlist of cell (5,5) is [(7,7)] and (6,6) lies on the line between (5,5) and (7,7);
so cells (5,3) and (6,2) lie in the same region.

We call the version of the wavefront propagation optimal-path-map algorithm which uses this defini-
tion of the path-generalizing function the pure version, since it is based on a simple definition of homogeneous-
behavior regions. Changes to the busic waveltent propagation wigosithm in Appendix B necessary toimplement
this are presented in Table | below (two pages). The key chiange is a check for boundaries between each cell
on the wavelront and its four neighbers. This is accomplished in procedure exaand.cell which is executed
once for eachi cell on the current wavefront. Procedure expand-cell calls procedure check-for-boundaries
which compares the path lists of each of the cell's neighbors with the expanding cell’s path list, shecking for
“equivalency” as defined above. Whenever a new cell is added to the wavefront, its path list is sei by proce-
duite set-optimal-path-List which is called from within orthognnzl-expasd, diagonal-expand, and overflow.
These procedures, although not shown here, are modificd from the versiuns shown in Appendix B by adding
a call to set-optimal-path-list after each new cell is added to the wavefront list or the overflow jist. When the

precedure check-equivalent-paths called by check-for-houndaries determines that twe path lists arc not




TABLE 1
WAVEFRONT-PROPAGATION OPM ALGORITHM

algorithm wavefront-propagation-opm (Algorithm III-1)
input: Goal-Point /* REVISED from algorithun B-1 ¥/
{ /* in Appendix B. ¥/

Wavefront := Goal-Point;
Boundary-List ;= empty list;

while (Wavefront not empty) [* Iteratively expand wavefront */
expand-wavefront(Wavefront); /* until nothing remains on it. */
} /* end of wavefront-propagation.opm */.
procedure expand-wavefront /* REVISED PROCEDURE */

input: Wavefront
{
if (Wavefront is empty) /* Base case of the recursion. */
{
Cells-for-New-Wavefront := empty list;
New-Wavefront ;= empty list;
}
else
{
Current-Cell := cell on Wavefront with min remaining cost;
expand.cell(Current-Cell);
Rest-of-Wavefront := Wavefront less Current-Cell;

expand-wavefront(Rest-of-Wavefront); [* recursive cali to expand-wavefront */
New-Wavefront := Cells-for-New-Wavelront /* Note: Wavefront is recursively emptied */
appended onto froot of New-Wavefront; /* out level by level and New-Wavefront */

} [* is built up as each level retums. */

} {* end of expand-wavefront */

procedure expand-cell /* REVISED PROCEDURE */

input: Current Cell

{ /* initialize flag assuming that Current-Cell */

Finished-With-Cell := TRUE; /* will not stay on Wavefront */

check-for-boundaries(Current-Cell), /* ADDED TO THIS VERSION */

Boundary-List := New-Boundury-List appended /* ADDED TO THIS VERSION */
to Boundary-List;

Cells-for-New-Wavefront := empty list;

for (New-Cell := North-, East-, South-, and West-Neighbor)
orthogonal-expand(Current-Cell,New-Cell),

for (New-Cell := Northeast-, Southeast-, Southwest-, and Northwest-Neighbor)
diagonal-expand{Current-Cell,New-Cell);

if not (Finished-With-Cell) 1* keep Current-Cell on Wavefront ¥/
Cells-for-New-Wavefront := Current-Cell appended
onto Cells-for-New-Wavefront; /* CHECK FOR GOAL DELETED */

} /* end of expand-cell */




TABLE 1 (CONTINUED)
WAVEFRONT-PROPAGATION OPM ALGORITHM

procedure check-for-boundaries
input: Current-Cell
(
New-Boundary-List := empty list;
for (Neighbor-Cell := each of
Current-Cell’s eight neighbors)

if not {Parent-Pointer of Neighbor-Cell = nil)

{
OPL1 := OPL-Parent of Neighbor-Cell;
OPL2 := OPL-Parent of Current-Cell;

/* NEW PROCEDURE */

/* if wavefront has reached neighbor, */
/* a boundary check can be made. */

if not (check-equivalent-paths(OPL1,0PL2)) /* update new boundary list */

New-Boundary-List := edge or comer

connecting the two cells appended to New-Boundary-List;

}

procedure set-optimal-path.list

input: Cell

{

if (Parent of Cell is on line segment between
Cell and OPL-Parent of Parent of Cell)
OPL-Parent of Cell := OPL-Parent

of Parent of Cell:

else
OPL-Parent of Cell := Parent of Cell;

}

procedure check-equivalent-paths
input: OPL1, the OPL-Parent of Neighbor-Cell
and OPL2, the OPL-Parent of Current-Cell
output: returns TRUE if paths are
equivalent, FALSE otherwise.

{
il ((first cell of OPLI = first cell of OPL2)
or ({irst cell of OPL1 is on the line
between first and second cells of OPL2)
or (first cell of OPL2 is on the line
between first and second cells of OPL1)
return(TRUE);
else return (FALSE):
}

N
)

/* end of check-for-boundaries */

/* NEW PROCEDURE */

/* NOTE: There are two parent-pointer fields in */
[* the "Cell" array - "Parent" field is predecessor */
/* of Cell on the backpath: "OPL-Parent" is the */
/* predecessor on the Optimal-Path List. */

f* end of optimal-path-list */

/* NEW PROCEDURE */

/* Paths are equivalent if first */
/* pair of cells are equivalent */

/* end of check-equivalent-paths */




equivalent according to the above definition, the edge which the two cells share is considered a boundary and
is added to a list of boundaries.

Since each cell with non-infinite cost is on the wavefront once during the algorithm, we will in the
end check each cell on the map. For two adjacent cells, if one cell is has been reached by the wavefront and
the other has not yet beer: reachied, the second cell’s path list will not yet be determined, so a boundary check
is not yet possible. But when the second cell is finally put on the waveftont, its path Iist is set and a check of
its neighbors will consider the first cell. So it is guaranteed that al} pairs of neighbors will be checked by the
end of the algorithm, and all boundarics between cells will be detected.

Note that references to the start point have beer: deleted from the algorithm, since we arz fooking for
paths to all start points. The initial center of the wavefront is called the goal point. Also, there is 110 possibility
for the algorithm to fail because of an inability to find the start point. When no cells remain on the wavefront,
the program is done. Then the fist of boundaries will be transformed ir<o the appropriate data structure, a doub-
Iy-connected edge list, and the path inforniation will be transformed into an optimal-path tree.

The procedure set-optimal-path-list will be called by procedures orthogonal-expand, diagonal-ex-
pand, and overflow each time a new cell is appended onto the Cells-for-New-Wavefront or Overflow lists
respectively.

Figure 14 (on two pages) shows the result of applying the pure definition: of the path-generalizing
function to wavefront propagation, with a map consisting of a single obstacle and a single high-cost area. The
figure shows successive snapshots over time as the wavefront expands an the back-pointers are set. The
wavefront expands from the goal point in the center, and back pointers show the optimal path from each stant
point io the gnal point. Homogeneous-behavior boundaries are shown as dotted curves. (Several horizontal
backpaths appear darker than the others only because of the resolution of the printer used.) Figure 14a shows
the first three snapshots, and Figure 14b shows the fourth snapshiot and a final frame with backpaths removed
for clarity.

Several humogeneous-behavios boundaries in Figere 14 are spurious, that is, are not predicted by
theoretical analy sis. (This analysis is presented in Chapter V.) Near the upper left corer of the higli-cost area,
for example, (sec Frame £ in Figure 14b) three straight homogencous-behavior boundaries emanate from a

poin un the edge of the high-cost area, one is vertical, one is at a 45° angle, and one is horizontal. The latres
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two of these boundaries de not have analogues in the theoretical case, and the first, analogous to the "shadow"
boundary expected at that vertex, is offset from the vertex of the high-cost area does not appear.

Some spurious boundaries are generated because straight lines are being approximated by piecewise-
linear curves in the eight allowable propagation directions. Several examples occur to the right of the high-
cost area and to the left of the obstacle. Multiple parallcl boundaries are geperated by the upper-left edge of
the obstacle, although all but the topmost boundary are spurious, while the two lower boundaries generated
by the lower-left edge are both predicted by the analysis of Chapter V. The reason for the difference is that
the lower-left edge is positioned at a 55° angle to the vertical, allowing a single straight path to lie along it.
Thus the above boundary-detecticn heuristic does not detect spurious boundaries along the edge because there
are no turn points on the path. But the upper-left edge lies at less than a 45° angle with the horizontal, and so
the path along it must "stair-step” its way to the upper vertex, causing boundaries to be generated. A similar
error occurs along the upper right and lower right edges of the high-cost area, where the stair-step nature of
the edges causes spurious exterior boundaries to appear. Further spurious boundaries occur in the inside of the
high-cost area, and outside it just above its rightmost vertex.

Optimal-path maps generated by the pure wavefront propagation OPM algorithm will be useful if
these spurious homogeneous-behavior boundaries do not matter. But there are approximately twice as many
boundaries as are predicted by theoretical analysis, so storage and run-time speed are correspondingly less ef-
ficient.

2. The Diverging-Path Version of Wavefront-Propagation Optimal-Path-Map Construction

Another approach is based on the idea that two adjacent cells whose paths diverge should be in dif-
ferent regions, and so a boundary must exist between them. A way of detecting divergence of paths is to check
the distance between the nth-generation ancestors of two adjacent cells. If the ancestors more than one cell
apar, the cells are defined as diverging paths. In other words, we define the path-generalizing function so that
it maps cells to sets of paths which do not diverge.

What should the value of n be? In other words, how far back along the paths of the two cells being
compared should we check? If n is small, there will be fewer checks to perform, enhancing efficiency. If n is
large some small terrain features may be overlovked by the divergence rule. On the other hand if n is large,

we can ilandle situations, such as boundary emanating from the obstacle in Figure 14b, Frame 5, where back-
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paths may parallel each other for some distance before diverging. But this situation can be taken care of by
adding a second condition which says that two cells are in different regions if their parents are in different
regions. Even with this rule, however, if n= 1, there are situations where the parents of two cells with diverg-
ing paths are adjacent; chhoosing n = 2 seems to give the best results. An additional necessary bearistic is that
two paths are in different regions if a cell between the two ancestors being checked is a terrain feature cell.
This handles special cases such as very acute obstacle vertices, or paths on opposite sides of a river. Figure 15
(on two pages) shows the result of applying these heuristics to wavefront propagation. We call this the diverg-
ing-path version of the wavefront-propagation OPM-generation algorithm.

So there are three heuristics used in the diverging-path version. First, adjacent cells whose second-
generation ancestors are more than one cell apart ate in different regions. Second, adjacent cells are in dif-
ferent regions if their parents are in different regions. Third, cells are in different regions if their
second-generation ancestors have a terrain-feature cell between them.

This variant algorithm is not much better than the pure variant, as can be seen by studying Figure
15b, Frame 5. Here too few boundaries are generated, and a few spurious boundaries appear as well. Those
boundaries defined in Chapter V as gpposite-edge boundaries, i.e., boundaries which distinguish between
paths which go in opposite directions around a terrain feature, are the ones best detected by the diverging-path
version. Shadow boundaries, i.e., boundaries which distinguish between paths which go through a terrain-fea-
ture vertex from those which bypass it, are not detected at all. Spurious boundaries arise within homogeneous-
cost areas. The homogeneous-cost area in Figure 15 has spurious boundaries just above its rightmost vertex.
But for purely binary terrain, i.e., obstacles on a homogeneous-cost background, the diverging-path version
may be appropriate.

3. The Vertex-Edge Version of Wavefront-Propagation Optimal-Path-Map Construction

Any variant algorithm that relies solely on the tums in a path will misinterpret some tums as due (o
the terrain whenin fact they wege due only to the mechanics of the algorithm (e.g., the eight propagation direc-
tions), and vice versa. Also, the diverging-path variant only detects a certain class of boundary. A way to at-
tack both of these problems is to plot boundaries based on how terrain-features affect optimal paths.

Interrain wth piecewise-lincar edges in homogeneous-cost background. optimal paths will turn only

al terzain feature vertices or edges (Theorem 1.2, Appendix A). Thus, if a tum in a path occurs at ather than a
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vertex or edge, it must be tuming based on algorithm mechanics alone. So we could check whether or not a

turn point in a path is adjacent to a terrain-feature vertex or occurs at the edge of a homogeneous-cost region.

We could definc the path-generalizing function as mapping a cell to a list of the terrain-feature vertices and
edges at which its optimal path tums. We can say that a path turns at a vertex or edge if the tum cell is ad-
jacent to or the same as the vertex or edge cell.

This approach requires some additional terrain preprocessing. Since temrain in the two previous ver-
sions has been represented entirely as individual cells, some way of finding and representing terrain-feature
edges and vertices will become necessary. Such a preprocessing algorithm could group cells into terrain fea-
tures of homogeneous cost, and then fit polygons to each featuse. For each vertex of the polygon, it could find
the closest corresponding cell in the original representation and label it as a vertex. For each edge of the
polygon, it could find which cells most closely corresponded to it and label them as lying on that edge. Wade
[Ref. 44] presents an algorithm for doing such terrain preprocessing.

So we redefine "path list" to include only vertex and edge descriptors. To do this, tum cells are check-
ed to see if they are adjacent to a terrain-feature vertex or edge. This procedure may create a spusious bound-
ary if a path tums twice within one cell of a vertex, a case which would bappen at a comer which formed a
very acute angle, for example, a river end. In this case, a spurious boundary would lie along the side of the
river segment away from the start point. We must also specify from which side a path crosses an edge, be-
cause a path may leave an area across an edge and then reenter it across the same edge. This type of path is il-
lustrated in Figure 16b, Frame 4, staning at the cell Jabeled A. The path from A has a path list (A,C,D,G]),
while a path from cell B has a path list [C,D,G). When comparing cells A and C (the first cells on the two
paths) 1o determine if A and B have a boundary hetween them, we must be able to determine that the first path
crosscs our of the high-cost area at A, while the second path crosses info the aiea at C, and so the paths have
different behavior. This set of heuristics provides the ability to detect boundaries inside homogeneous-cost
areas, across rivers, and across roads. The procedurcs set-optimal-path-list and check-equivalent-pathsarc
listed in Table 2 with the appropriate changes.

Figure 16 shows the above heuristics in operation. There is a very close correspondence between the
bourdlaries of Figure 16b, Frame 5. and the theoretically conrect boundaries for an exact optimal-path map.

Few spurious boundaries are gencrated. For example, there are too many boundaries emanating from the far
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TABLE 2
WAVEFRONT-PROPAGATYON OPM ALGORITHM
CHANGES FOR VERTEX-EDGE VERSION

procedure set-optimal-path-list /* REVISED PROCEDURE */ -
input: Cell
{
if (Parent of Cell is on Edge; and OPL-Parent of /* include a cell in OPL for each boundary- */
Parent of Cell is not on Edge;) [* crossing episode. */
OPL-Parent of Cell :=Parent of Cell;
else if (Parent of Cell is on line segment between /* SAME AS PREVIOUS VERSION */
Cell and OPL-Parent of Parent of Cell)
OPL-Parent of Cell := OPL-Parent of Parent of Cell;

clse
OPL-Parent of Cell := Parent of Cell;
} [* end of optimal-path-list */
procedure check-equivalent-paths /* REVISED PROCEDURE #/

input: OPLI, the OPL-Parent of Neighbor-Cell
and OPL2, the OPL-Parent of Current-Cell
output: returns TRUE if paths are equivalent, FALSE otherwise.

{
if (OPL1 = OPL2 = [goal-point])

retum(TRUEY);
else .
{
fori=l1t02
until ((first cell of OPL; is adjacent to
a cell marked "vertex") or (first cell of [/* Consider only cells which are */ -
OPL; is marked "edge;™) I* adjacent to terrain-feature vertices */
OPL; := OPL,; less first cell; /* or represent edge-crossing episodes */
if ((first cell of OPLI = first cell of OPL2) /* Paths are equivalent if each */
or (first cell of OPLI1 is on the line /* pair of cells are equivalent */

between first and second cells of OPL2)
or (first cell of OPL2 is on the line
between first and second cells of OPL1)
or ((edge; = edgej) and /* NEW CONDITION */
check-equivalent-paths{OPL]1 less first
cell, OPL2 less first cell))
Boundary-Flag := TRUE:
else Boundary-Flag := FALSE;
]
} /* end of check-equivalent-paths ¢/
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right vertex of the high-cost area. And few boundasies are overlacked, although some shadow boundanes do
not appear. For example, & shadow boundary should emanate from the lower right vertex of the cbstacle; in
Chazpter V we develop analytic chiaracterizations of homogensous-behavior boundaries and find tha the linear
boundaries jnicide~t upen vertices should act as {f they were shadows with the goal acting as 2 point fight
sourc® Also, the curred boundaries on the hidden side of obstacles should be hyperbolas, and the curved boun-
daries inside homogeneous-cost areas should have monotonic curvature, From these comments, it can be seen
that the voundaries generated by the vertex-ecige version {as well as the other versions of wavefront propaga-

tion) have some ¢rror in location and shape, although they may suffice for mayy applications.

C. RECONSTRUCTING OPTIMAL PATHS FROM WAVEFRONT PROPAGATION
OPTIMAL-PATH MAPS

How can we 12construct the optimal pzth from the start point knowing the node of the optimal-path tree
witich descibes its behavior? The answer depend3 or: what intormation is available in the nodes, which «vill
be differesit depending on the versicn vt w...efront propagation, because homogeneous-behavior regions are
defined differently for each version. For the pure or diverging-path version, each optimal-path-tree node rep-
resents a single cell. Because intennediate turn cells on the portion of a path which lies within a homogeneous-
behatvior region are a result of the mechanics of the algorithm, and not of terrain-feature influence, a path can
be approxieated by plotting ciraight lines from a start cell to the cell of the node representing the region in
which the start celi lies, another straight line from that cell to its parent ii; the optimal-pathi {ree, and so on back
to the gual Thix type ef patk no longer confo.ms to the grid-based model; otherwise, some "stair-step” ap-
proximation of the line would b2 required. By Thecrem I-2, in the type of terrain considered herein, paths are
sirught-line segiients except at terrain-feature vertices oredges. So the vertex-edge version can use the above
methed for paths from start cells to nodes mpresenting vertices, ard between vertices. Between edges, further
processing would be necessary to determine where aleng an edge a given path would cross uging Snell’s Law

as discussed in Chapter IL.
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IV. ANALYSIS OF WAVEFRONT-PROPAGATION OPM-GENERATION
ALGORITHMS

A. SOURCES OF ERROR IN WAVEFRONT-PROPAGATION OPM-GENERATION
ALGORITHMS

A problem with using wavefront propagation 10 generate opnmalpalh maps is that the inherent error of
the afgorithm is carried forward to the OPM. As stated previousty, Richbourg [Ref. 20] showed that an upper
bound on the error factor of the cost of a model-optimal path generated by the point-to-point wavefront
propagation algorithm compared ¥ith the cost of the corresponding real-world optimal path is cos(%t/8), or
about 7.6%. The fact that the shapes of boundaries generated by wavefront propagation are only approxima-
tions of the correct shapes derived in Chapter V reflects the error in the shape and cost ol: optimal paths in-
herent in wavefront propagatios.

‘The opt:mal-path map in our approachs oes not retain information about ali the intermediate celis where
each path tumns, and so we cannot reproduce the path exactly as generated by wavefront propagation. If we
could, however, the upper bound on percent error 6£ 7.6% would remain in effect, because nothing in the OPM
algorithms of Chapter 111 éffecte,d how the wavefront expanded from cell to cell. The backpaths of Figures 14,
15, and 16 are all identical (compare Frame 4 of each figure), and only the boundaries differ. Altkough we
cannot reconstruci a path exacidy as:generated by wavefront propagation, the straight-line approximation
method proposed-iis Section C of Chapter ill actually produces-a path as good or better in cost than the
wavefront propagation path. Straight- line approximations of  path always go through e region root, which
was on the original path. They aiso Jie completely within an area of homogeneous cost, because homogeneous-
behuvior regions are star-shaped with respect to the region root (Corollary 1-1.4). By the triangle inequality,
their cost is always less than or eyual tc the original path. So since costs of straight-line approximations are
Jower bounds on cosis of wavefront-generated paths, the previvusly stated upper bound on percent esror
remains a valid upper bound. Can this upper bound be improved?

Although in the case of 103! stazt cells, substantial improvement over the cost of model-optimal paths

generated by wavefront propagation will be achieved by this path reconstruction method, the upper bound on




error cannot be tightened in general, because there will be situations where the error in placement of a bound-
ary would cause a start point to be placed in an incorrect region, (although without exceeding the upper bound).
An example of such a case occurs in Frame 5 of Figure 156, at the point labeled X. The optimal path from point
X should be a straight line to the goal. But since wavefront propagation caused error in the placement of the
vertical boundary (it should have been a "shadow boundary,” a ray from the upper left vertex of the high-cost
area extending directly away from the goal point), X is to the right of the vertical boundary instead of to its
left, soitis associated with the region whose root is the top-left edge of the high-cost area. Thus, a reconstructed
path will go in a straight line to the top of the high-cost area, and then cut across its comer and go the the goal.
‘This path has a cos! error close to the original upper bound.

Thus the upper bound on percent error of the cost of wavefront-propagation-generated model-optimal
paths with respect to real-world optimai paths remains as stated for the point-to-point version of the algorithm,
i.e., 7.6%, although average error will be improved by appropriate reconstruction of paths from the optimal-

path map.

B. TIME COMPLEXITY GF WAVEFRONT-PROPAGATION CG#4-GENERATION
ALGORITHMS

As stated in Chapter 11, point-to-point wavefront propagation implemented using Dijkstra’s algorittun has
worsi-case time complexity O(m log m), where there are m cells in the input map. In Algorithms B-1 (Appen-
dix B) and 10-1 (Chapter I1I), however, the algorithm is modelled on the wavefront analogy, and Dijkstra’s
aigorithm is not followed exactly (because cells may remain on the wavefront for more than one iteration, and
asearch for the minimum-cost edge is not Cane for each wavefront). As explained in Chapter II, the time com-
plexity of this version is O(c m). where ¢ is the maximum cost of a cell in the input map, time is incremented
by 1 unit each step, and it is assumed that there is some upper bound on the size of c.

The mechanism for detecting boundlarics is to check each cell en sthe wavefront against each of its eight
neighbors. There are eight. or O(constant) checks for each of the m cells in the map. Each boundary check i
the pur e version consists of an Q(constant) comparison of the first tum points on the backpaths of the two cells

heing chiecked So boundan -checking takes O(m) time. This is added to the time for the basic algonthm, so




the pure version of wavefront-propagation optimal-path-map generation has the same asymptotic worst-case
time complexity as point-to-point wavefront propagation, or O(c m).

Inthe diverging-pathversion of wave{ront-propagation optimal-path-map generation, the boundary check
consists of a comparison of the distance between the parents of the parents of the two cells. Again it is an
O(constant) operation to follow two back-pointers for each cell and compute a distance, so boundary-check-
ing takes O(m) time, and the diverging-path version is also O(c m).

The vertex-edge version of wavefront-propagation optimal-path-map generation uses the same path lists
as the pure version, but considers only so-called distinguished cells on the lists. A check of the first two dis-
tinguished cells in a path list by procedure check-equivalent-paths will give a conclusive answer «bout
wheiher or not two paths are "similarly behaved". This check is an O(constant) process where the first element
in each list is retrieved, and the two elements compared. So the vertex-edge version also has worst-case time
complexity O(c m).

As discussed in Chapter 111, the vertex-edge version requires preprocessing of the terrain to fit groups of
homogenesus-cost cells to polygons or line segments, and to find vertices and edges. The algorithm of Wade
and Rowe {Ref. 44] which does this has two passes. The first pass processes each cell once, in total O¢m) time.
The second pass is recursive, and a worst-case time complexity is not given, but for a map with k edge cells,
is approximately O(log k). Under the above assumiptions, the number of edge cells is significantly less than
the number of cells, so k<m. Therefore the terrain preprocessing is dominated by the wavefront propagation

algorithumn.

C. SPACE COMPLEXITY OF WAVEFRONT-PROPAGATION OPM-GENERATION
ALGORITHMS

The space requized for the point-to-point wavefront propagation algorithm is simply O(m), where the
input map has m cells. Storage is usually impiemented by a Vm by Ym array which holds cost information
and a pointer to the parent of the celf on its backpath. During execution, another data structure will hold the
roordinates of those cells currently on the waveizont. When the algonthm 1s expanded to deal with the two-
dimenstonal, or optimal-path-map case, several new Jata structures must be added. First, for the pure and the

vertex-edge versions, two fields must be added to the cell array to hold the coordinates of the cell’s parent on
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the optimal-path list (in general not the cell’s parent on the backpath). Secondly, new data structures must be
added 1o hiold the output. These data structures are the DCEL and the optimal-path tree.

As explained in Chapter I, Section B, a doubly-connected edge list (DCEL) along with an optimal-path
tree are well suited to representing the optimal-path map. The size of the optimai-path tree is proportional to
the number of homogeneous-behavior regions in the optimal-path map, since there is one node per region.
Since in the worst case there could be no more than one region per cell, the optimal-path tree will never re-
quire more than O(i:) storage. In fact as discussed above, the number of regions is assumed to be significant-
1y larger than the number of cells, so the optimal-path tree will only require a small fraction of the total number
of cells in the input map, and is more accurately a funiction of the number of terrain feature vertices and edges,
or (v +e).

The DCEL represents the planar partition by listing characteristics of each line segment, or edge, in the
partition. Since each segment of the wavefront-propagation-OPM boundaries is designated as lying between
two specified cells, there can never be more than O(m) boundary segments, and in fact, the one-dimensional
nature of boundaries will tend to produce an DCEL of 0(\,;1—1) size. In terms of terrain-feature veriices and
edges, it is shown in Chapter V that any given vertex or edge has a constant number of region boundaries as-
sociated with it, so the DCEL will have size of O(v + e). Note that the O(m) input map can be discarded after
preprocessing, so the amount of storage needed at run-time will be O(v +e).

In practice, a great amount of storage can be saved in the way the planar partition is represented by the
DCEL. As produced by the wavefront-propagation OPM-generation algorithm, boundaries are represented by
lists of cell edges (perhaps implemented simply by listing coordinates in the same coordinate system as the
cells. but incremented or decremented by .5). But in fact, boundaries in the grid-based domain typically con-
tain long, near-lincar sequences, so the number of edges in the DCEL can be reduced greatly by representing

only endpoints of such sequences. Figure 16 shows about half of the boundaries to be linear.

D. EMPIRICAL PERFORMANCE OF WAVEFRONT-PROPAGATION OPM
IVMPLEMENTATIONS
The three versions of the OPM-generation algorithm described in Section B of Crapter III were imple-

munted ‘'n Common Lisp on a Symbolics 3620 Lisp Machine. Although no special effort was made to make
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these implementations efficient, some idea of the relative performance of the four versions, and some rough
idea of the performance of wavefront propagation in general, can be gained by observing actual run-times.
Table 3 shows average elapsed times for two typical input maps, based on the Lisp function "get-universal-

time". These real-time figures give some rough idea of the actual performance of these implementations.
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TABLE 3
WAVEFRONT-PROPAGATION OPM-GENERATION
RELATIVE PERFORMANCE OF THREE VERSIONS

|

(average CPU Time) 449,759 cycles 793,094 cycles 2,292,827 cycles
(average Real Time) 493 sec 843 sec 2,440 sec

2

(average CPU Time) 1,558,722 cycles 916,535 cycles 2,013,910 cycles
(average Real Time) 1,714 sec 973 sec 2113 sec

NOTES:

(1) Average CPU Time is elapsed time as per machine-dependent LISP function "get-internal-run-time"
averaged over eight runs.

(2) Average Real Time is elapsed time as per LISP function "get-universal-time" averaged over eight runs.
(3) Versions were implemented in Common-Lisp on a Symbolics™ 3640 operating under Genera 4.1™,
(4) Map 1 was 199 by 150 cells (i.e., 29850), with one obstacle and one high-cost feature, 12 vertices and
12 edges, with 465 cells, or 1.5%, of infinite cost (obstacle cells) and 741 cells, or 2.5%, of cost two.

(5) Map 2 was 199 by 150 cells (i.e., 29850), with three obstacles, 15 vertices and 15 edges, with 619 cells,
or 2.1%, of infinite cost.
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V. CHARACTERIZATION OF REGION BOUNDARIES

In this chapter, we formulate the geometrical groundwork necessary for an OPM construction algorithm
which relies on spatial reasoning to eliminate much of the inaccuracy inherent in the wavefront propagation
OPM construction algorithm. The algorithm applies to maps consisting of the five types of terrain defined in
Chapter I, Section E, obstacles, roads, rivers, homsgeneous-cost areas (HCA), and homogeneous-cost back-
ground. The approach we use is to determine the analytic characteristics of boundaries between regions of
similarly-behaved optimal paths as functions of terrain feature characteristics. It tums out that all boundaries
associated with the first three of the above terrain feature types (roads, rivers, and obstacles) are segments of
conic sections. Boundaries associated with HCA's are more mathematically complex, and in many cases do
not appear to have closed-form expressions. In addition to the algebraic form of these boundaries, we develop
the theory which describes the circumstances in whicheach type of boundary occurs. The algorithms described
in Chapter VI will rely on the results developed in this chapter for the basic steps involving construction of
each boundary.

First, primitive terrain features, that is single polygonal obstacles and homogeneous-cost areas, and single
river and road fine segmer:is, are studied and the boundaries they generate are characterized. Then a unifying
theory is introduced which un:” - iies all types of boundaries as they occur in terrain as defined herein. Develop-
ment of algorithms for constructing OPM’s for each of the primitive terrain features and for combined terrain
is deferred until Chapter V1. Appendix C contains additional examples of optimal-path maps for each of the

primitive terrain features presanted.

A. RECION BOUNDARIES ASSOCIATED WITH PRIMITIVE TERRAIN FEATURES

Table 4 summarizes the types of hamogeneous-behavior-region boundaries associated with each type of
primitive terrain feature, Each type of terrain feature is listed in the left column. The second, third, fourth, and
fifth columns contain the names of the boundary types associated with that terrain feature which are linear,
parabolic, hyperbolic, and non-conic respectively. Since there are four cases of homogeneous-cnst area (HCA)
depending on whether the goal is inside or outside the HCA and on whether the HCA cost is higher or Jower

than the surrounding terrain. each of which has distinctively different boundaries, these four cases are fisted




TABLE 4

SUMMARY OF HOMOGENEOUS-BEHAVIOR-REGION
BOUNDARIES BY TERRAIN TYPE

EQRM OF BOUNDARY
LINEAR PARABOLIC HYPERBOLIC NON-CONIC
Obstacle Shadow(c/c) Opposite-edge(c/c)

Obstacle-edge

River Segment  Shadow(c/c)

River-edge
Road Segment  Road-edge Near-side-road-
Rd-end/road- travelling/goal(p/c)
tvig(c/p) Far-side-road-
Rd-tvlg/road- travelling/goal(p/c)
crossing(p/c)
Shadow(c/c)
High-Cost HCA-edge
Exterior-Goal  Hidden-edge/
HCA merging-path(p/p)
Hidden-sdge/
diverging-path(p/p)
Shadow(c/c)
High-Cost HCA-edge Hidden-edge/goal(p/c)
Interior-Goal ~ Shadow Visible-edge/goal(p/c)
HCA Hidden-edge(p/p)
Interior-opposite-edge(p/p)
Low-Cost HCA-edge Edge-following/goal(p/c)
Exterior-Goal ~ Venex/edge-following(c/p)
HCA Vertex-edge-crossing(c/d)
Low-Cost HCA-edge
Inicrior-Goal  Verex/edge-crossing(c/d)
HCA
Multiple- Shadow(c/c)
Connccted River-edge
River Segments
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River-opposite-edge(c/c)
River-crossing(c/c)

Road-end/goal(c/c)

Opp-edge-0-thru-
interior(c/c)
Opp-edge-1-thru-
interior(c/d)
Opp-edge-2-thru
interior(d/d)

Exterior-opposite-
edge(c/c)

Vertex/goal(c/c)

River-opposite-edge(c/c)

River-crossing(c/c)

Visible-edge(d/d)

Visible-hidden-
edge(d/p)

Comer-
cutting(c/d)

Comer-cutting
(c/d)
Visible-edge(d/d)

Edge-xing/(d/c)
Opposite-edge(d/d)
Visible-edge(d/d)

Near-side-river-crossing(c/c)




separately. Also listed with each boundary name is a coded description of what type of cost functions ase as-
sociated with the homogeneous-behavior regions on either side of the boundary. The code "c" means thie cost
function of a region is conical, "p" means it is planar, and-"d" means it is a "distorted cone". Terrain-feature
edges always form boundaries, which of cousse are linear since terrain-feature edges are linear, but are not as-
sociated with a particular cost function, so no code is shown. (See Section C for a discussior of cost functions.)
1. Obstacles

W'; begin by characterizing boundaries associated with a single obstacle i homogeneous-cost back-
ground terrain (see Theorem V-1, Appendix A). (The types of boundaries associated w..h obstacles have pre-
viously been determined by Mitchell [Ref. 4] using differer:i terminology.) Wit.. respect to obstacles, definc
a visible edge to be an edge for which no point on the cdge has an optimal-path fist whose first element lies
on the obstacle perimeter. Define a iidden edge ac a nos-visible edgs, i.e., an edge for which some psint on
the edge has an optimal-path list whose ficst element lies on thw obstacle perimeter. In the case of terrair con-
taining only a zingle obstacle, this means that both visible-edge vertices are visible to the goal point. In Figure
{7, edges AB and BC arc visible edges. Edges CD, DE, and EA ate hidden edges. (Many of tix Sollowing
figures are similar in format. Terrain features are shown as poly gous orline segments. Homogeneous-behavior-
region boundaries are shown as solid curves. Occasienally continuations of the boundaries are shown as dashed
lines to clarify the form of a bousodary. In many of the figures a field of smal} vectors represerits the initial
direction 1t i oplimal paths from 4 sampling of start poims. These fieids are not pact of the optimal-path
map, but zerve to illastrate the directions pathis tzke and o corroborate the comeciness of plotted boundaries.)
Define an gpposite edge 1o be the obstacle hidden edge for which the optimal pati lists of neither veriex -
cludes the ctlier. An isolated obstacle has exactly ore ¢pposite edge {Lemma V-1.3, Appendix A).,:Edge DE
is the opposite edge in Figure 17. A special case is that i-which the role of the opposite edge is zssumed by
an obstacle vertex- ¢his is ruled out by th- - -ncral position assumption discussed in Chapter I,—allhougit the
analysis fo incleding such a case is a simple extension of tae below. Define an opposite point as the point on
the opposite edge with two distinct optimal paths. one through each vertex of the opposite cdge.

There are thiee types of boundaries 23sociated with ohstacles. Obssacle edges are trivial boundaries,
since thiey separate regions whose opiimal-path lists are {[], gzoal-point] from regions with nun-tlcganvrate op-

timal-path lists (sce Lemmia V-1.1Y. Obst le shodow s emanate from vertices of hidden edges in a straight




ﬁ
...l.iﬂllm ~ M N N S N N N N N N N N N NN
.m'.” —_ o MmN N N N N N N N N N N A
mm .m:ﬂw —_ N Y N N N SN N N N N N N N NN
.. .\.J..;.Nn.u.l m w —_ o ot e M M N N N N SN N N N N NN
hl [ =0 Q — e e e mm e N NS NS S N NS N NN
) = =
T T e e W S S
© ! O / ,,,, B T e i T T i T S
| - - = ——— e -
lllllllll - o~ e — — —
“ll\l\u\l\»\;\.\\\\\\ - -
\\\\l\\.\\\\\\\\.. - -
\.\\\\\\\\\\\\.\.~ ~ v
\\\\\\\\\\\.\\..- - s 7
\\\\\\\\\\\\\\~ // 7 7/
\\\\\\\\.\\...\..\w s 7/
\.\\.\\\.\\\\\-._ Vs
P R A a4 R A
\\\.\\\.\. [
PRV VA A ad
s s s A - - - ===
PRV A AP <t e
P
\.\\n\\u\\ llllllll
\\m\\\\ e e e e e o o o
\\....l!l\..\\\\..\\.\..\.\u\\\\\
\\.s\\c. \ll‘\\l\l\n\\\‘\.\n\\\\\
-~ \\o\l\\\\s\\.\\\\\\.\
- \\\\\\\\.\\\\\\'\\v\
- \\\-\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\.\\‘\

— e w— —

N Y S

~

-

e My ey Y Ny e N, N

- - e

.ty

L A

— T ey ey ey ey Sy e

— — e

— e

—

¥ e g et e M

o
—— Sw  mmrp  tme e S e e Gme e e Ve Sow  me See ey N, %

[T

e

rd

-

[

e ot ot et et pud et et P amw et w4

— S S

.m—-.—-—aa’-/,&/—'//”/‘//

- - ot it ?

Sra
s

~
" o ——

* .
o s — - =

-,

-

PO S S e it et A o
o o P e et P et e h A

!
i
L.

Figure 17

Obstacle

75




line, as if tue goal were a point light source; each vertex of a hidden edge generates a shadow boundary. For
those vertices which join a hidden edge and a visible edge, the line segment lies on the line defined by the ver-
tex and the goal; for those vertices which join two hidden edges, the line segment lies on the line defined by
that vertex and the vertex of the hidden edge which is included in the first vertex’s optimal path. (See Figure
17 and Lemma V-1.2, Appendix A).

Each obstacle also has exactly one opposite-edge beundary which emanates from the opposite edge
of an obstacle, and consists of segments of hyperbolas. This follows directly from the definition of a bound-
ary by the application of bastc unalytical gecrmetry (see Lemma V-1.4, Appendix A). The hiyperbola is defined
by considering the vestices V1 and V2 of the opposite edge us foci. Choosing a coordinate system such that
the x-axis intersects both foci and the origir is mid-way batween them, Equation 1 describes the opposite-edge
boundary. Forcing constant a to be positive restricts Equation 1 to the one branch of the hyperbola which is
closer to the higher-cost focus. Thz segment of this branch which is active as a boundary begins at the point

on the opposite edge intersected by the branch and continuses away from the obstacle. (See Figuze 17).

(Equation 1)

2

2
-%2 =& where  a=(IGVal-IGVI)2, IGVal>IGV]l,
c=IViVai2, andb?=c?-a%

QIJ Nh)

If at any point the opposite-edge boundary intersects a shadow boundary, it will become defined by
another hyperbola from that point on. This cecond hyperbola is defined by considering as foci (1) the veriex
of the edge associated witls the shadow boundary and which is the closer to the goal of the two vertices of that
edge, and (2) the focus of the previous hyperbola which is not also a vertex of the edge associated with the
shadow. The hyperbolic constant is computed as before, using the cosis from the foci to thie goal. The segment
begins at the pomt where the second hyperbola intersects the first hyperbola, and continues away from the
obstacle. The direction of curvature of the second hyperbola may be the same or opposite that of the first. (See
Figure 17).

2, River Segments
Single isolated river segments generate four types of boundaries (see Figure 18 and Theorem V-2,

Appendix A . River-cdges are trivial boundaries (Lemma V-2.1). Shadow boundaries are associated with exch
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river vertex, and are half-lines starting at a river vertex and lying directly away from the goal (Lemma V-2.2).

River-crossing boundaries differentiate between paths that cross a river and ones that go around its end. A

river-crossing boundary is a segment of a hyperbola defined by considering the river vertex Van: .. ,0al G
as foci, with the constant in Equation 1 being a =IVGI/2. The segmeut begins at the point at which the hyper-
bola intersects the river and ends at the point at which it intersects the river-obstacle boundary (below). This
type of boundary may not appear if the river-crossing cost is too high or if the angle between the river and the
goal-to-river-end line approaches or exceeds 90°. (Lemma V-2.3). A river segment will act like an obstacle
when the distance of the start point to the river plus the river-crossing cost is large compared with the distance
from the river to the goal. If this occurs, aboundary will start at the intersection of the two river-crossing boun-
daries, if they exist, orif not at the river edge. This opposite-edge boundary will be ahyperbola defined by the
tworiver-end vertices Vi and V2 asin the obstacle opposite-edge case above. (LemmaV-2.4). The river shadow
boundaries will never intersect the opposite-edge boundary, so it will consist of only one hyperbola segment.
3. Road Segmerts

Single isolated road segments are associated with various types of boundaries, depending on their
orientation with respect to the goal (Theorem V-3, Appendix A). Consider a wedge with the goal G as the ver-
tex, formed by extending two rays from G through the line of the road intersecting the line at two points A and
B, so what the interior angles GAB and GBA are the angle Ye = t/2—0c, O the critical angle suchthat O; =
sin"(R/S), for R the road cost, and S the cross-country cost, where R is greater than S. Call this the charac-
teristic wedge of the road segment. (See Figure 19.) We adopt the convention for the following discussion that
the wedge intersection points A and B are labelled such that their relative positions on the road line are the
same as the relative positions of the two road vertices V1 and V2 (e.g., if V1 is to the right of V2 on a certain
map, then A is to the right of B). When A and B and V| are arrayed along the road line in the onder B,A, V),
(irrespective of V2's position), say that the characteristic wedge is inside V1. When they are arrayed in the
order B,V1.A or when A and V arc the same point, say that the wedge straddles V1. When they are arrayed
in the order V1,B,A, say that the wedge is ourside V1. There are seven types of boundaries induced by zoad
segments, as listed below. When the characteristic wedge is inside Vi, types a,b,c, and d exist on the V; end
of the road sezment. When the characteristic wedge striddles Vi, types a and g exist on the Viend, When the

characteristic wedge is outside V1. types a,d, and fexist on the V2 end, and vice versa. When tire charactenis-
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tic wedge is inside both Vi and V2, type e also exists on each end. When the characteristic wedge is inside Vi
and straddles Vz, type e exists on the Vj end only. Figure 20 and Figure 21 show two example road segiments )
with their associated boundaries (labeled a).

Type a: Road-edge boundaries separate paths which start on one side of a road from those which start
on the other side. All road segments will constitute road-edge boundaries (Lemma V-3.1). For example, the
road segment V1V2 in Figure 20 is a road-edge boundary.

Type b: Road-end/road-travelling boundaries separate paths which go to a road end and begin using
the road from those which go to & road interior point and begin using the road. They are linear, and form a fan-
shaped region at the road end. When the characteristic wedge is inside a road-end vertex V, there will be two
road-end/road-travelling boundaries beginning at V and forming angles of 7t/2-9. and O.—1/2with  the
road. (Lemma V-3.2). Figure 20 shows four such boundaries (labeled b), two each emanating from road ver-
tices V1 and V2, because the characteristic wedge isinside both V and V2. Figure 21 shows two road-end/road-
travelling boundaries emanating from vertex V2, because the wedge is inside V2, but none from Vy because
the wedge is outside V.

Type c: Road-end/goal boundaries separate paths which travel directly to the goal from paths that
travel {0 a road end and then along the road. These boundaries are segments of hyperbolas where road-end V
and goal G are the foci, and the hyperbola is described by Equation 1, where V1=G and V2=V. The boundary
begins at the point where the hyperbola intersects the road-end/road-travelling boundary. A road-end/goal
boundary exists on the goal side of the road segment for vertex V1 if and only if a pair of road-end/road-travell-
ing boundaries exist. if the characteristic wedge is outside V2, a road-end/goal boundary will also exist on the
far side of the road segment for vertex V. (Lemma V-3.3). In Figure 20, two such boundaries exist (labeled
c), one associated with each vertex of the road segment, and both on the goal side of the road, although the
boundary on the V2 end 1s not shown being off the page to the bottom. In Figure 21, two such boundarics exist
associated with V2, although both are off the page.

Type d. Near-side road-travelling/goal boundaries lie on the pear side of the road (i.e., on the goai
side) and separate paths wiuch enter a road mtenor, travel along it, and then exit the road to cut over to e ]

goal from those which go directly to the goal. These boundaries are described by segments of parabolas defined

tor road-end vertes 'y as follows. the focus of the parabola is the goal, G, and the directrjx is thie hue perpen-
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dicular to the characteristic wedge ray GB and which intersects the ray GB, and is a distance IGA! from A if
the characteristic wedge is inside V1 and not outside V2, and a distance IGV2! from V2 if the wedge is inside
V1 and outside V2. This parabola is described by Equation 2, where the y-uxis is the directrix and the x-axis is

the axis of the parabola.

(Equation 2) yi=dpx where  p=deos¥Be)d

for d =1GAI if wedge not outside V2,
axt 4 =GVl if wedge is outside V2.

The segment of the parabola which is a boundary begins at point A if the characteristic wedge is in-
side Vi and not outside V2, and begins at peint V if the characteristic wedge is inside Vy and outside V2. It
ends at the point where the paraboia intersects the near-side road-end/road-travelling boundary and the road-
end/goal boundary if there is a road-end vertex, and continues indefinitely if there is pot. It exists unider the
same conditions as these two exist. (Lemma V-3.4), Figure 20 shows two near-side/road-travelling boundaries
(labeled d), because the wedge is inside both V1 and V2. 'The directrices D ant D; are distances IGAl from A
and IGBI from B respectively, because the wedge is inside both V1 and V2. If the wedge had siraddled either
vertex, the same distances would continue to apply. Figure 21 shows one near-side/road-travelling boundary,
but this one has a directrix (not shown) with a distance IGV (| from V because the wedge is outside V.

Type e: Road-travelling/road-crossing boundaries separate paths which begin on the far side of the
road from the goal and travel along the road fron: those which also begin on the far side but cross the road and
go directly to the goal. This type of boundary will exist for road-end Vi when the characteristic wedge is in-
side Vy and not outside V2. I is linear (a ray), and is the portion of the characteristic wedge ray beginning at
A and lying on the far side of the road. (Lemma V-3.5). Figure 20 shows examples of two road-travelling/road-
crossing boundaries which occur because the characteristic wedge is inside both: vertices. Figure 21 has no such
boundarics, because the wedge is outside Va.

Type f: A far-side road-travellinglgoal boundary occurs on the Vi end when the charcteristic wedge

=

icontcide Vi Iticace

anrahnala wittd fancn £ amd dlanaste
segment of 2 parabela with focus G

and dircciiiz Dsuchiihai D is pcxpt;miicuiar 10 thie ray
GA. but does not intersect it (i.e., D lies on the other side of G from A), and D2 is distance IVG! from V. This

parabola is defined similarly to the one in Equation 2, except that d=1V1Gl. One far-side road-travelling/goal




boundary occurs in Figure 21 on the V2 end of road segment because the characteristic wedge is outside V2.
Non occurs in Figure 20, because the wedge is outside neither vertex.

Type g: A road-shadow boundary occurs when the characteristic edge straddles a vertex V. It separates
points whose paths cross the road en route to the goal from those which go directly to the goal, The shadow
boundary is a ray starting at V and lying directly away from G. (Lemma V-3.7). Note that since paths which
cross roads pay no additional cost, this type of boundary occurs only by convention. We want path descriptions
to reflect each terrain-feaiure-edge crossing, even though no change in direction or cost rate occurs for this
case. This type is not illustrated in the accompanying figures.

4. Homogeneous-Cost Areas (HCA)

Homogeneous-cost areas (HCA) generate boundaries both inside and outside the HCA. The outside
boundaries are similar, although not identical, to those associated with obstacles, rivers, and roads. This is not
surprising, since the HCA is a generalization of each of these types of terrain. There are four cases, based on
the relative costs of the HCA interior and exterior and the location of the goal inside or outside the HCA. We
first consider the case where the cost of the nterior of the HCA is greater than the cost of the exterior and the
goal point lies outside the HCA., then the high-cost, interivr-goal case, the low-cost exterior-goal case, and the
low-cost interior-goal case.

a. High-Cost HCA With An Exterior Goal

When the goal is exterior to the homogeneous-cost area, and the cost of the HCA is greater than
the surrounding terrain, boundaries occur according to Theorem V-4, Appendix A. Define a visible edge of an
HCA to be an HCA edge for which no point on the edge bas an optimal-path list whose first element lics on
the HCA pesimeter. Define a ltidden ecge as a non-visible 2dge, i.e., an edge for which some point on the edge
has an optimal-path list whose first elenient lies on the HCA perimeter. Thus a hidden edge may have points
whose optimal paths travel through the HCA, which would mean that their optimal paths would have as their
first efemient e visible edge scross swhich they pass. Define opposie-edge sequence as the smallest connected
sequence of hidden cdges for which the first and last endpoints of the edge sequence have optimal paths whose
initial directions follow the HCA edges in opposite (i.¢., clockwise versus counterclockwise) directions. If no
such emdpoint can be found at ene end or the other of the sequence of hidden edges, let the endpuint at ti:at end

c

be tire "outer” veriex of the last hidden edge. i.c.. the veriex which joins the Iast hidden edge inthe clockwise
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(or counterciockwise) direction with the first visible edge in the clockwise (or counterclockwise) direction. In
Figure 22, the initial direction of optimal paths for each edge endpoint is shown as a vector. HCA 1 has op-
posite-edge sequence ED, HCA 2 has opposite-edge sequence EDCB, HCA 3 has opposite-edge sequence
FED, and HCA 4 has opposite-edge sequence JIHFE. Essentially, this definition spzcifies the range over which
a search must be conducted for an opposite point, if one exists, and defines the HCA vertices which may
generate opposite-edge boundaries (see below). Define the gpposite point of an HCA as a point with two op-
timal paths lying in opposite directions (i.e., clockwise and counterclockwise) along HCA edges. If “shortcut-
ting" occurs through the center of HCA, the opposite point might not exist, as in HCA 2 and HCA 3 of Figure
22.

Define the critical angle Oc of an HCA as sin"(c|/cz) where the ¢; are the unit costs inside and
outside the HCA, and ¢1 > c2. An optimal path crossing an HCA edge will obey an analogue of Sneil’s Law
in optics [Ref. 20] (see Chapter II, Section E) so that for angle of incidence 01 and angle of refraction 0,
and cost rates c1 and c2 on either side of the edge, c sin(01) = c25in(02). (See also Chapter 1I, Section
E2b(3) and Figure I1-8).

Inside a high-cost HCA with extemal goal, there are four types of boundaries (See Figures 23,
24, and 25). Each pair of HCA edges is potentially associated with an interior boundary. The boundary type
depends on whether the edges are visible or hidden, and are on the same or opposite sides of the opposite-cdge
boundary. A visible-edge boundary distinguishes optimal paths which go through two different visible edges;
the optimal paths cross their respective edges according to Snell’s Law. Lemma V-4.1 (Appendiz A) states
the analytic form of such a boundary. Although not expressible in closed form, the boundary has much the
same shape as a hyperbola segment which forms an obstacle opposite-edge boundary, i.e, it has positive but
decreasing curvature from its point of incidence upon an HCA vertex inward into the HCA, and this curva-
ture is typically small so that the curve is almost lincar. An example of a visible-edge boundary is found in
Figure 23, labeled a.

A visible-hidden-edge boundary distinguishes optimal paths going through a visible edge from
those going through a hidden edge; the Iatter paths traverse the HCA edge at exactly the critical angle and the
follow the edge. Lemma V-4.2 states the analytic forny of this type of boundary, which again is similar to a

hyperbola. Examples of this type of boundary occur in Figures 23, 24, and 25 and are labeled b.
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& hidden-edge merging-path boundary distinguisbes optimal paths leaving the HCA at two dif-
ferent hidden edges at exactly the critical angle, and for which all paths merge before the goal. A way to check
for this behavior is to sec if as optinal path from a vertex of one of the edges includes a vertex of the other
edge. Lemma V-4.3 states the analytic form of this type of boundary, which is a line segment. The boundaries
lzbeled c in Figures 23, 24, and 25 are hidden-edge merging-path boundaries. A kidden-edge diverging-path
boundary is like the preceding except the two classes of paths merge only at the goal. This type of beundary
is also a line scgment, as stated in Lemma V-4.4. Examples of this type of boundary occur in Figures 24 and
25 and are labeled d.

Each pair of adjacent edges is always associated with one of the above interior boundaries, while
rion-adjacent edges may or may not be. If shoricutting does not occur across an HCA cormer, a boundary will
start at the vertex at that corer. If shortcutting does occur, the boundary associated with that vertex will in-
tersect th: HCA edge at the point where shortcutting starts (see Figure 23 where two ot" the boundaries labeled
b intersect the opposite edge, Figure 24 where one of the boundaries Iabeled b intersects the lower right edge
of the HCA, and Lemma V-4.5). From the vertex or shortcutting point at which such a boundary begins, it will
continue into the HCA interior until it intersects another boundary or HCA edge. At the point at which two
such boundaries firstintersect they will terminate, and a third boundary will begin which represents the division

*ween the two regions which the first two boundarics did et have in common. For example, in Figure 23
the boundary associated with vertex V1 distinguishes paths which cross edge ViV2 from those which travel
along edge V1Vs, while the boundary associated with vertex Vs distinguishes those which travel along edge
V:Vs from those which travel along edge V4V’ passing through vertex Vs. These two boundaries begin at
their respective vertices and intersect in the HCA interior, and from that point a third boundary begins which
distinguishes paths which cross edge ViV2 from those which travel along edge V4V passing through vertex
Vs. These two descriptions (“crossing ViV2” and "travelling along V4Vs through Vs") represent the two
regions which the initial boundaries did not have in comnion, so they characterize the third boundary. Boun-
daries will continue to intersect and new ones begin in the HCA interior until the boundary associated with
cach visible vertex is joined with one or more hidden ventices or HCA edges (Lemmas V-4.10 and V-4.11).

These networks of boundaries can be represented as trees, where each boundary is considered a node, and

edges connect nodes whose boundaries intersect (see Lemma V-4.10). Such a tree, called an interior-bound.




ary tree, has interior nodes with exactly two children, while the root of such a tree can have zero, two, or four
children. A tree whose rcot and sole node has zero chirlren represents a boundary which goes from one edge |
of she HCA 1o another without intersecting any other boundaries, such ar *te boundary smanating from ver-
tex V2 in Figure 23. A boundary separates two regions, and ¢y iime two boundaries intersect it must be, as
explained above, that they have one of the two regions in common. Beyond the point of intersection, the two
regions they did not have in common mus’ t= separated by a boundary. Thus each time two boundaries inter-
sect, a third must begin. We choose as lezf nodes those boundaries associated with HCA vertices, because one
of these boundaries is guaranteed to exist for each vertex, and no other interior boundaries intersect it at the
vertex or edge, so we can be sure that they will have no children. At the other end of such a boundary it either
intersects an HCA edge, meaning its node is a root without children as described above, or it intersects two
other boundaries, one of which will also be associated with an HCA vertex and so be another leaf node. If the
Iatter is true, the boundary beginaning at the intersection point of the two leai- node boundaries will serve as
the parent node of the two boundaries. This merging of boundaries will continue until the parent node’s bound-
ary intersects an HCA edge, in which case the node is the tree’s root, or until roots of two boundary trees are
found to represznt the same boundary, in which case the two trees can be merged into one. This is the case
where a root will have four children, representing the two boundaries which intersect each end of the root’s
voundary. Several examples and illustrations of the construction of such interior-boundary trees are given in
Chapter V1.

Outside the HCA, there are four types of boundaries Again, HCA edges are trivial boundaries
(Lemma V-4.5). HCA shadvws are defined exactly as for obstacles (Lemma V-4.6). Examiples of HCA shadow
boundaries are labeled e in Figures 23, 24, and 25. The otber two types are FICA opposite-edge boundaries
and HCA corner-cwting boundaries. HCA cpposite-edge boundaries are the generalization of obstacle op-
posite-cdge boundaries, and differentiate between paths which start outside the HCA and go through or arounxd
the HCA in different directions. There are three types of opposite-edge boundaries. depending on whether
neither, one, or both optimal paths go through an HCA edge. A path which does not go through the HCA goes
around it initially via one of its vertices. The case where neither path gos through the HCA is the same as the
obstacle opposite-cdge boundary case, and is described by connected hyperbolasegments. The first and secomd

cases have 1aore complicated analytic forns, although the shape of the boundaries is very similar to hyper-
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bolas. (Lemma V-4.7). In Figures 23, 24, and 25, opposite-edge boundaries are labeled f. In Figures 23 and
24 all three cases occur, while in Figure 25 the HCA is a virtual obstacle, that is, it appears to points outside
it that it is an obstacle, so the only opposite-edge boundary it has is the third, or hyperbolic case.

HCA Comez-cutting boundaries occur when optimal paths cut into the HCA along an edge which
is not part of the opposite-edge sequence. In fact, the analytic form of this boundary is just a variation of the
second of the three types of opposite-edge boundaries discussed in the previous paragraph. Corner-cutting
boundaries emanate from a vertex connecting a hidden and a visible edge when shortcutting occurs across
those edges (for example, in Figure 24, labeled g). In the generalization of this case where the edges across
which shortcutting occurs are separated by one or more edges, the comer-cutting boundary begins at the point
at which the set of interior boundaries intersects the hidden ec e (Lemma V-4.8),

The construction of interior-boundary trees is useful in finding exterior boundaries. There is ex-
actly one opposite-edge or comer-cutting boundary associated with each interior tree of boundaries, and each
visible HCA vertex is connected, eithzr directly or viaits interior boundary tree, to an opposite-edge or cormer-
cutting boundary. (Lemma V-4.11}. When an interior boundary tree includes as a leaf node an interior hidden-
edge-diverging-path bourdary, the point at which the boundary intersects the HCA edge is connected with an
exterior opposite-edge boundary. When an interior-boundary tree includes as a leaf node a point of intersec-
tion of an interior boundary and an HCA edge, but does not include an opposite point, for example, as hap-
pens three times along the hidden edge of the HCA in Figure 23, this point ol intersection is connected with
un exterior opposite-edge or corner-cutting boundary. When as happens to the rightmost vertex in Figure 24,
avericxisnot connected with any interior boundary tree, comershortcutting occurs and a corner-cutting bound-
ary is connected with the corner veriex. Two HCA opposite-edge boundaries or comer-cutting boundaries may
intersect each other or a shadow boundary, and if they do a third boundary begins at the point of intersection
arxd lies away from the goal, as in the case of obstacle opnosite-edges.

Anoptimal path will travel into ahigh-cost HCA from outside it only across an edge which forms
an angle greater than sin"!(20¢) with another connected HCA cdge (Ref. 20). If none of the hidden edges are
associated with included angles of less than 20 with «..anected visible edges and the cost ratio and dimen-
sions of the HCA allow, it acts exactly as an obstacle with respect to all stant-points outside the HCA. Such an

HCA is called a virtual obstacle. The HCA shown in Figure 25 is a virtual obstacle. If all the opposite-edge
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and comner-cutting boundaries converge and beccme a single opposite-edge boundary away from the goal, the
HCA becomes, for all points beyond the point of convergence, a virtual obstacle.
b. High-Cost HCA With An Interior Goal

An HCA containing the goal point and with higher cost than the surrounding terrain generates a
set of exterior boundaries similar to the high-cost exterior-goal case, while the interior boundaries are reminis-
cent of road boundaries. The similarity to road boundaries arises because for start-points inside the HCA, it
may be profitable to move away from the goal point initially in order to travel along an HCA edge in the ex-
terior, lower-cost region, just as if there were a road segment along the HCA edge. Figure 26 illustrates the
high-cost interior-goal case (see Theoresn V-5).

We will define edges for this case with respect to each of its vertices, 50 that an edge may be
defined differently for each of its endpoints. Define a visible edge with respect to one of its vertices V as an
edge for which the optimal path from V cuts into the HCA interior at some point along the edge (either im-
mediately from V or along the edge interior). Define a /iidden edge with respect to V as an edge for which the
optimal path from V starts along the other edge incident to V, or for which no optimal path from any point on
the edge cuts directly into the HCA interior. Define an opposite edge as an edge which is a hidden edge with
respect to both its vertices. There are four types of interior boundaries, which are line scgments and parabola
segments. Each HCA vertex can generate a set of boundaries. For each vertex V, if the optimal-path from that
vertex consists only of the goal point, i.e, if the optimal path from the vertex goes directly to the goal, then
there are no interior boundaries associated with that vertex.

If on the other hand the optimal path from HCA vertex V travels initially along ut: HCA edge,
call the edge along which the path travels initially E2, and call the other HCA edge incident upon V (along
which the path does not travel) Ej. In this case there will be a boundary assoziated with vertex V which is a
line segment. This boundary starts at V and separates paths which cut overto edge Ej and go through V from
those whizh cut overto edge E2, bypassing V. This is a hidden-edge boundary as defined for the exterior-goal
case above. (In Figure 26, boundaries Inbelled a are hidden-edge boundaries. Also see Lemma V-5.1 in Ap-
pendix A). Ju this case there will also be a parabolic boundary called a hidden-edgelgoal boundary, which
separates optimad paths which go directly to the goal from those which go initially away from the goal to cdge

E1 and from there throogh V and on around the HCA, cutting back in to the goal at another point on the HCA
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perimeter, This parabola is formed by considering the goal point as the focus, and constructing the directrix

such that it is perpendicular to a line from V into the HCA exterior which forms an angle of 7t/2 + 0c with |

edge E1, and such that it is a distance d from V where d = cost(optimal path from V)/c ;, where c; =exterior
cost. (See the boundaries in Figure 26 labeled b, and Lemma V-5.2, Appendix A.)

If in addition, the first turn point P on the optimal path from V is an interior peint of edge E2,
i.e., if the second leg of the optimal path from V cuts into the FICA to the goal, there will be a boundary called
a visible-edgelgoal boundary associated with V and edge E2 which separates paths that go directly to the goal
from those which go initially back to E2 then travel along E2 to P, and then cut into the HCA at P to the goal.
The visible-edge/goal boundary intersects the HCA edge at P. Again, the focus is the goal point, and in this
case the directrix is perpendicular to a line from P into the HCA exterior which forms an angle with line seg-
ment PV of 7U/2 + Oc, and which is distance d from P such that d =cost(OPL(P))/c . (See Figure 26, the boun-
daries labeled ¢, and Lemma V-5.3.)

The other type of interior boundary occurs when two adjacent vertices on a hidden edge have
optimal paths which both lie initially on an HCA edge, but which go in opposite directions around the HCA
(i.e., for which neither optimal path includes the other vertex). This is the same situation that occurs in the
dcfinition of an obstacle opposite-edge, and so such an edge is called an }ICA opposite edge. However, there
may be zero, one, or more opposite edges in this case. Each HCA opposite edge ViV2 generates an interior
opposite-edge boundary, which separates paths which exit the HCA and go through vertex V from those
which exit and go through vertex V2. (See Figure 26, the boundary labeled ¢, and Lemma V-5.4.)

The exterior boundaries in this case are quite similar to the high-cost exterior-goal HCA case.
There are five types of exterior boundaries. 2/CA edges are trivial boundaries (Lemma V-5.5). Shadow boun-
daries are associated with each vertex V whose optimal path OPL(V) includes as its first path-vertex a point
P on the HCA perimeter. The shadow boundary is constructed by extending a ray from V along line VP away
from P. (See Figure 26, boundaries labeled e, and Lemma V-5.6.)

Opposite-cdge boundaries emanate from each HCA opposite edge. An opposite-edge boundary
begins at an opposite point with a hyperbola segment and extends outward fror the HCA, being formed ex-
actly as in the exterior-goal case. Since there may be more than one opposite edge, there may also be more

than one opposite-edge boundary. (See Figure 26, boundaries labeled fand Lemma V-5.7.) Visible-edge boun-




daries separate paths which cross two edges en route to the goal. This type of boundary exists whenever an
optimal path from an HCA vertex goes directly to the goal. The boundary starts at the vertex and lies outward,
possibly terminating when it intersects ihe next kind of boundary. (See boundary labeled g in Figure 26, axl
Lemma V-5.8.5 Corner-cutting boundaries emanate from points at which hidden-edge/goal boundaries from
the interior intersect the HCA edge. They separate poiuts whose optimal paths cross the edge from those which
go arourxl the edge vertex. These boundaries begin at the HCA edge and are concatenated with new curve seg-
ments at each point at which the earlier curve intersects a shadow boundary, as in the corner-cutting case above.
(See boundaries lubeled h in Figure 26, and Lemma V-5.9.)
¢. Low-Cost HCA With An Interior Goal

Analysis of an HCA with lower cost than the surrounding terrain, where the goal is in the HCA
interior, shows a much simpler set of boundaries (Theorem V-6). There will never be any boundaries inside
the HCA in this case, because there is no incentive for an optimal path to move away from the goal to the high-
cost, external terrain, and there are no terrain-feature edges or vertices between any point in the HCA and the
goal, since our HCA's are assumed convex. (See Lemma V-6.1, Appendix A.) External boundaries will occur
inpairs, forming a wedge emanating from each vertex of the HCA, much as in the case of road-end/road travell-
ing boundaries for a road segment. The external bounxlaries are all rays which begin at an HCA ventex and L.
away from the goal, and can be constructed by tracing a path from the goal to the vertex, and then employing
Snell’s Law for the path with respect to each of the edges incident to the vertex to determine the orientation
of the two boundaries. Call this type of boundary a vertex/edge-crossing boundary (see Lemma V-6.2). Figure
27 shows a low-cost HCA with isiterior goal, and the boundaries it induces on the plane.

. Low-Cost HCA With An Exterior Goal

The final case, where the cost inside the HCA is lower than the surrounding terrain and the goal
is outside the HCA, bears some similarities to the low-cost, interior-goal case and some (o the high-cost, inte-
rior-goal case, In this case, parabolic and similar boundaries occur outside the HCA, treating HCA edges as
if they were roads, and the wedges which occur in the low-cost, interior-goal case are present in this case as

well. Only one type of boundary occurs in the HCA interior, and seven types occur in the HCA exterior

(Theorem V-7), Figure 28 illustrates a typical fow-cost, exterior-goal HCA.
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Low-Cost, Interior-Goal HCA
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Inthe exterior, in addition to the trivial edge- boundaries (Lemma V-7.1), boundaries can be con-

structed by considering the behavior of the optimal path from each of the HCA vertices. For each vertex V of |

the HCA, let E1 and Ez be the edges incident upon V, while V) and V2 are the vertices such that VV; = Ej

and VV2 = E2. Additionally, let vertex Vi be closer to the goal than vertex V2, i.e., the cost of the optimal

path from V be less than the cost of the optimal path from V2. .
If the optimal path .com V goes initially along HCA edge Ej, (note that it will not go along E2

because of the naming convention above}, the paths treat the edge somewhat as if it were a road. Let P be the

first point on the optimal path from V, which will be the point at which the path exits the HCA interior toward

the zoal. A vertexiedge-following boundary and a vertex/edge-crossing boundary are associated with from V

with respect to edges Ej and E respectively. The vertex/edge-crossing boundary is a ray with vertex V lying

inthe HCA extezior such that the ray and the first leg of the optimal path from V form a Spell’s-Law crossing

of HCA edge E2 (see Lemma V-7.2). This type of boundary separates paths which go to vertex V and then

along edge E1 from those that go directly to E1 and fciiow along it. The vertex/edge-following boundary is a

special case of the vertex/edge-crossing boundary where the Sneli’s-Law angle of the ray with edge E; is the

critical angle 6. (sec Lemma V-7.3). These boundaries are labeled 1 in Figure 28. The vertex/edge-crossing

boundary separates paths which go to a vertex V and then cut into the HCA interior from those that cross edge

E; into the interior. In Figure 28, these boundaries are labeled 2. R
Also occurring is an edge-foilowingl/goal boundary which is a parabola with the goal point as

focus and directrix perpendicular to a line from P at an angle 7¢/2 + O, lying adistance d away from P where

d is the cost of an optimal path from P. This type of boundary separates paths which go to edge E; and follow

the edge from those which go directly to the goal. (See Lenyma V-7.4) Figure 28 has these type of boundaries

labeled 4. Additionally, a vertex/goal boundary occurs which is similar to the road-end/goal boundary of the

road segment case. This boundary begins af the point at which the edge-following/goal boundary intersects

the vertex/edge-following boutdary, and is a hyperbola segment with V and G being the foci, and the hyper-

bolic constant being the cost of the optimal path from V (see Lemma V-7.5). Figure 28 labels this type of .

boundary 3. This boundary may continue indefinitely, or it may intersect the vertex/edge-crossing boundary

emanating from V. If these two intersect, both terminate at the point of intersection and a third boundary dis-

cussed below begins,
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For each HCA vertex V for which the optimal path from V goes initially into the HCA interior,
a pair of linear vertex/edge-crossing boundaries will occur, just as in the interior-goal, low-cost case. These
boundaries separate points whose optimal paths enter the HCA through a hidden verte. from those which enter
through a hidden edge. Each boundary is constructed by extending 2 ray from V into the HCA exterior such
that the ray and the first leg of the optimal path from V fonmn a Spell’s-Law crossing of Ei and E2 respective-
ly. Ifin addiuon the vertex/goal boundary associated with vertex V) intersects the vertex/edge-crossing hound-
ary emanating from V1 associated with edge Ej, a third boundary begins. If the first point P along the optimal
path from V is an HCA vertex, the boundary will be an edge-following/goal boundary, a paravola, as discussed
above. If P is an inierior point of an HCA edge, the boundary will 2 more general type of curve siinilarin shape
1o a parabola, called an edge-crossinglgoal boundary (see Lemma V-7.6) In Figure 28, these type of boun-
daries are labeled 5. A vertex/goal boundary also occurs, beginning at the point at which the edge-crossing/goal
boundary intersects the vertex/edge-crossing (or edge-following) boundary associated with edge E; .
Whenever an interior boundary (see below) intersects a hidden edge of the HCA, an exterior boundary begins,
called an opposite-edge boundary (see Lemma V-7.8 and Figure 28 boundary labeled 7). Opposite-cdge boun-
daries separate paths wiich cross an edge into (heilrlCA interior and then go across the HCA to exit across a
second, visible edge, from those which cross the same first edge into the HCA but exit across a third, visible
edge. Just as in the high-cost, exterior-goal case, these boundaries may intersect and new opposite-edge boun-
daries begin, but in this case they are of only one type and separate paths which cross one pair of edges from
those which cross another pair.

There is only one type of boundary in the interior of a low-cost, exterior-goal HCA. It begins at
a visible vertex which is not direcily connected to any other boundaries, and separates points whose optimal
paths cross one visible edge incident to the vertex from those which cross the other visible edge. Becaus~ of
its similar boundary type in the high-cost exterios-goal case, it is called a visible-edge boundary (see Lemma
V-7.7 and the boundary labeled 6 in Figure 23). Just as in that case, the interior boundaries may intersect and
generate new boundaries, which are als.  isible-edge boundaries. Whenever a visible-edge boundary inter-
sects a hidden edge, the visible-edge boundary terminates and an opposite-edge bour"ry begins in the HCA

exterior. Both the visible-edge boundary and the opposite-edge boundary types are similar in shape to hyper-
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bola segments, although their algebraic form is not expressible in closed form. These boundaries typically

have very little curvature.

B. A UNIFYING VIEW OF REGION BOUNDARIES
The boundaries associated with each terrain feature and the homogeneous-behavior regions they separate
can be viewed in a more unified manner. This view will provide the basis for a key step in the algorithm
presented in Chapter VI which merges optimal-path maps for isolated terrain features into consolidated op-
timal-path maps.
1. Cost Functions of Regions With Respect to Region Roouts

The ccst of optimal paths from each start point in the plane is a function of the location of the start
point. In other words, there is a cost function of X and Y which characterizes the entire map. Consider the
region in the vicinity of the goal, for which the goal is the region root. Cost is proportional to distance {rom
the goal, in the absence of intervening terrain, so iso-cost contours form circles about the goal. This cost func-
tionis aninverted cone with vertex at the goal-point, or the upper half of a cone as defined in classical geometry.
Inany homogeneous-behavior region with a point as its root, there will be some additional cost of the optimal
path from the root to the goal. For each region whose root is a single point then, the cost function in the region
will be conical with respect to a vertical axis through the point. The vertex of the cone representing the cost
function will be shifted upward on the cost axis by the amiount of the cost of an optimal path from the root.

Another type of region root is an edge along which paths travel en route to the goal, for example, 2
road segment (see Figure 29). In the discussion above regarding road segments, it was noted that the path from
a point whose optimal path enters a road to travel along it does so at the critical angle O = sin"(Cy/Co)
where Cris the cost of travelling a unit distance by road and Cy is the cost of traveiling a unit distance in back-
ground terrain. Also, therefore, the cost of traveliing from the point of entrance onto the roxd Pg to the point
of exit from the road Px is CpIPEPx} = Cosin(0c) IPEPXI.

The cost of rravelling from point S to the road and along the soad to the point of exit Px is then ISPEICh
+ IPEPXICksin( Bc) = Cu(ISPE! + IPEVxIsing Oc)). Consider » right triangle with hypotenuse PPy, with one leg
a continuation of SPg to the other side of the road from S to point Q. Now IP£QI = IPEPxIsin{0p), so the cost

of travelling from S to Pe and along the soad to Px is Co(ISPel +IPEQly = CuISQl since S, Pg, and Q are colinear.
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Thus, the cost from any point S to move to a road and travel along it to some point Px is proportional to the

distance from S to a line at angle O, with the road and passing through Px. But by this description, S describes _

a plane which intersects line QPx lying in the plane of the map, such that the slope of the plane in the gradient
direction is Co!SQINSQI = Cb. So the cost function associated with a length-wise-travelled edge is a plane.

A third type of region root is an edge which paths cross, obeying Snell’s Law as they do so. As each
path crosses the edge, it enters a region where the cost function becomes proportionally greater or less than
before. But each edge which is crossed according to Snell’s Law perfonmns a transformation on the current cost
function, or intuitively speaking, distorts the cost function. The cost function associated with a Snell’s-Law
edge is therefore a distortion of the cost function associated with the parent of the edge in the optimal-path
tree. Thus there are two cost functions associated with Snell’s-Law edges, one where the cone of a point-type
root is transformed by the edge resulling in a distorted cone, and one where the plane of a road-type root is
transformed by the edge, resulting in a plane. For regions with conical cost functions, paths which crossed into
it from a region with alower cost would have a cost function which was a flattened "cone”. Paths crossing into
it from a region with a higher cost would have a cost fusiction which was a "cone” with greater curvature, For
regions with planar coct functions, higher-cost adjacent regions would bave a more sloped cost function, while
lower-cost adjacent regions would have a less sloped cost function.

There are any number of "higher-order” cost functions associated with Spell’s-Law edges ending in
a point. For example, paths could cross three edges enroute to a point. So it does not appear to be possible t»
derive a finite number of analytic characterizations of cost runctions for all varieties of Snell's-Law edges.
Note. however, that although a cost function may be transformed by any number of Snell’s-Law edges, it has
its basis in either a poin! or a linearly-traversed edge root, so there are really only two general classifications
of Snell’s-Law cost functions, those for n crossings rooted in a point, and those for n crossings rooted in a
lincarly-iraversed edge. Once a sequence of region roots leads back to a point or a traversed edge, a fixed cost
is associated with the point or the goal end of the edge, which is the cost from that point to the goal, and so no
other previous information about cost functions remains relevant.

A river edge can also be a region root. However, since a river edge only adds a {ixed amount to the
cost of paths which cross it, it serves only to shift vertically by a fixed amount whatever cost function occurs

in the region on its near side. and so cannot be said to have a characteristic cost function of its own. The final
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type of region root is the degencrate one, the null list, adopted by convention to represeat regions which have
no feasible paths, for example, obstacle interiors. Since the cost of a path in the degenerate region is infinity,
the: cost function will be considered undefined.

Since these are the only types of region roots-which occur in the terrain defined for this research,
there are only three general types of cost functions: cones, plazes, and various orders of distorted cones, depend-
ing respectively on whether the region has a point as its root, a linearly-traversed-edge or one or more Snell’s-
Law edges ending in a linearly-traversed edge as its root, or finally a Snell's-Law edge as its root leading to
one or more Snell’s-Law edges and a point.

2. Boundaries Between Kegions as Intersections of Cost Functions

The occurrence of many of the simples types of boundaries can now be explained in terms of the cost
functions of the region roots for regions which the boundary separates. Since at a boundary between two
regions, the cost function for both regions applies, it must be that the boundary is the projection on the XY
plane of the intersection of the two cost functions. The intersection of two cones with paralle] axes i5, accord-
ing to basic analytic geometry, a hyperbola, and so it becomes clear why the boundary betwveen two regions
with points as roots is always a hyperbola.

The boundary between a region whose root is a point and a region whose root is a road-segment was
determined in Section A3 above to be a parabola. Since the slope of the plane which is the cost function of the
road-segment’s region was shown above to be the cost rate of the background, and the slope of the cone is also
the cost rate of the background, we have the condition which specifies in intersecting a plane with a cope that
the intersection is a parabola.

The intersection of two plancs is a line, so the boundary between regions which both have linearly-
traversed edges as roots is a line scgment. For example, the hidden-edge merging-path boundary of a high-
cost, external-goal HCA is such a boundary, and as shown in Section Ada above is indeed a line segment.

The more complicated boundaries involving one or more Snell’s-Law edges ending in a point also
are consistent with this view, although the mathematics involved in computing the intersections of general-
ized shapes is complex. Boundaries involving Sncll’s-Law edges ending in a linearly-traversed edge arc: of the
same types as those involving single lincarly-traversed edges. Since there are three general types of cost func-

tions, and each boundary can be described as the intersection of two cost functions, there are six non-redun-
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dant ways that two cost functions may intersect, as in Table 5. Each entry in the last row and the last column
depends on the number of edges crossed by the region roet, and will be different for different numbers of .
edges. For some cases, a boundary listed as a parabola, hyperbola, or distorted parabola or hyperbola will
degenerate to a straight line,

A view which takes iito account the nature of the cost functions associated with regions which are
separated by boundaries leads to a more unified approacii to the derivation of the analytical forms of the boun-
daries. This view will become important in the process of merging several single-feature optimal-path maps
discussed in Chapter VI, since there will be too many possible cases of-region intersections to derive each
analytical form case by case. The above six forms will provide the basis for a general solution to the problem

of merging OPM’s.




point
(cone)

Vi

(plane)

S:L edge to pt
(distorted cone)

TABLE 5

BOUNDARY TYPES BY REGION ROG'T PAIRS

Region Reot Type (cost functi )
point lineady-traversededge  ScLdgetopt
(cone) (plane) (distorted cone)
hyperbola parabola distorted
hyperbola
parabola line distorted
parabola
distorted distorted distorted
hyperbola parabola hyperbola
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VI. ALGORITHMS FOR GPM CONSTRUCTION BASED ON SPATIAL
REASONING

A. OPTIMAL-PATH TREE CONSTRUCTION

The fist step in constructing an optimal-path map is to build an optimal-path tree (OPT). A straightfor-
ward way to do this is presented here, although a more efficient way would be to build the OPT during the ex-
ecution of an algorsithm such as recursive-wedge decomposition or the continuous-Dijkstra algorithm. A set
of optimal paths from the goal point to each terrain-feature vertex is computed using any point-to-point path-
planning aigorithm. The tum points of these optimal paths are then sequentially inserted into the OPT by scan-
ning each path list from the goal point to its start point as the OPT is traversed from its root (the goal) through
its internal nodes, matching nodes of the tree with tum points of the path.

As the insertion algorithm traverses the OPT, a pointer identifies the current node. A pointer also iden-
tifies the current element of the path list. If the current node has a child node which matches the current efe-
ment of the path lict, the child node becomes the current node and the next element on the path fist becomes
the current one. If the current nicde has no child node which matches the current path-list ciement, a new node
is created which matches the path-fist element and whose parent is the current node. Then as tefore, the child
node becomes the current node and the next path-list element becomes the current one. When the end of the
path list is reached, the insertion is complete. When all the terrain-feature-vertex optimal paths have been in-
serted into the OPT, one final node representing the empty path list (for "start” points with no feasible paths,
as for example in the middle of an obstacle) is inserted as a child of the root node and the initial OPT is com-

plete.

B. BASIC ALGORITHMS FOR iSOLATED TERRAIN FEATURES

Furst, we present algorithms to construct planar partitions for four types of isolated single terrain features,

H 0" T nneled Thn wt rmetitlones alacn ccilileitn morttonnal cntle bonn- X ~e : 1 retfe cvamen
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An algerithm is presented for obstacle, river segment, and road segment primitives, and for each of the four

cases associated with homogencous-cost areas (HCA).
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1. An Algorithm for OPM Construction for A Single Obstacle

For a single obstacle in 2 homogeneous-cost background (see Figure 17), the algorithun to construct
the optimal-path map with respect to a ceriain goal point, given the optimal-path tree, is straightforward. The
OPT for asingle obstacle will have three branches from the root, one of which will consist only of the enipty
node. Each of the other two branches will consist of one chain of nodes representing vertices on one side or
the other of the obstacle. The algorithm begins by taking the obstacle edges as the starting set of homogsneous-
behavior boundaries. Then it constructs all the shadow boundaries by traversing down the two branches of the
oplimal-path tree whose nodes represent vertices on opposite sides of the obstacle, creating a shadow bound-
ary for each edge of the tree until it finds the leaf node of each branch. Then it construcis the opposite-edge
boundary starting with the hyperbola generated by the two vertices of the opposite edge and sweeping away
from the goal. Each time the current segment of the opposite-edge boundary intersects a shadow boundary, a
new pair of foci is determined, and the new hyperbola segment is constructed. The algorithm is finished when
the opposite-edge boundary does not intersect any more shadow boundaries.

Table 6 (on two pages) shows the algorithm for construction of a single obstacle OPM. Algorithms
are presented using standard procedural conventions as in Chapter 111, with natural-fanguage explanations sub-
stituting for rigorous tiotation where possible without ambiguity. The input to each algorithm is a representation
of the terrain feature and an optimal-path tree, representing the optimal paths from each terrain-feature ver-
tex. The doubly-connected-edge-list (DCEL) data structure presented in Chapter I, Section A is used to rep-
resent the planar partition. ‘We assume that low-level algorithms are available to manipulate the DCEL, for
example, insert-into-dcel. Assume also that specifying an optimal-path tree node is equivalent to specifying
the coordinates of the vertex represented by it, as well as the cost of the optimal path from the vertex to the
goal.

The procedure add-obstacle-opposite-edg=-bdryis called by the algorithm to construct the opposite-
edge boundary as it lies outward fron: the obstacle. It does this by finding, if they exist, points of intersection
with the shadow boundaries from the two vertices which serve as the foci of the hyperbola which is the active
portion of the opposite-edge boundary, and choosing the one which occuss closest to the obstacle. Both the
shadow boundary and the hyperbola are truncated at this point, and new faci and a new hyperbola are deter-

mincd. This hyperbola becomes the active portion of ihe opposite-edge boundary, and new shadow boundaries




TABLE 6
OBSTACLE OPM ALGORITHM

algorithm single-obstacle.opm: (Algorithsn VI-1)
input: Optimal-Path Tree with root node N
and associated obstacle edge-list O;
output: Optimal-Path Map M (a DCEL)
and modified Optimal-Path Tree N;
purpose: to construct an OPM for a single obstacle;
{
M := empty dcel structure;
while (O is not empty) [* insert obstacle edges into DCEL. */

insert-into-dcel(M,First edge of O);
O := 0 less first edge of O;
}

Npmv = N; /' initialize anv o Goal. I'/
i=h
for each child-node of N [* construct shadow boundaries. */
{
Ncm'r = Chi.ld'node(N):
if Neure has a child node /* ie, if node is not a leal node. */
until Neurr has no child nodes /* ie, if node is a region root. ¥/
{ /* traverse to bottom of this branch. */
Nprev := Neurr
Bdry := Line NeuriNprev [* ie, ray starting at Ncyer and */
less ray NevrNprev ; /* lying away from Nprev. */
insert-into-dcel(M,Bdry); /* add shadow boundary to DCEL. */
)
Opposite-edge-vertex; := Neurr: /* note: there are exactly two such vertices. */
j=j+ L
}
)
forj:=1t02

{

Focus;j := Opposite-edge-vertex;;

Costj := cost of optimal path from
Opposite-edge-vertex;;

add-obst-opp-edge-bdry /* construct opp-edge bdry. */

(Focusy,Cost,Focus2,Cost2,M,N);
} [* end of single-obstacle-opm Algorithm */
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TABLE 6 (CONTINUED)
OBSTACLE OPM ALGORITHM

procedure add-obstacle-opposite-edge-bounuary
input: coordinates and optimal costs from opposite-edge
vertices, shadow bdrys represented in DCEL M, and optimal-path tree N;
output: revised DCEL M;
purpose: to build the opposite-edge bdry by concatenating successive hyperbola segments;
{
ShadBdryi :=shadow bdry from Vertexi;
ShadBdry? := shadow bdry from Vertex2;
repeat until neither shadow boundary itersects the hyperbola;
{
Bdry :=segment of hyperbola branch such that /* initialize Bdry to initial ieg starting at */
Focusj := Vertex), Focus? := Vertex, /* obstacle opposite-edge. */
hyperbolic constant := abs(Cost; - Cost2),
and segment lies away from goal;
Intersect) := point of intersection of Bdry
with shadow bdry from Focust;
Intersect2 := point of intersection of Bdry
with shadow bdry from Focus?;
if at least one shadow bdry intersects Bdry
{
j :=j which minimizes length from the beginning
of Bdry to Intersect; ;
Bdry := portion of Bdry between its beginning
and Intersect;;
insert-into-dcel(M,Bdry); [/* add current segment of opp-¢. bdry to DCEL. */
Bdry :=segmenn of hyperbola branch starting  /* get next segment of opposite-edge odry. */
at Intersect; such that Focus; := parent-node(Focus;),
Costj = Cost of Focus;, hyperbolic constant
=abs(Cost) - Cost2), and segment Jies away from goal;
ShadBdry; := shadow bdry from Vertex;; /* substitute new shadow bdry from new focus. */
J
else insert-into-dcel(M,Bdry); /* add last segment of opp-edge bury to DCEL */

]
} /* end of add-obstacle-opp-edge-boundary */
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are checked forintersections, When no intersections are found, the procedure is finished and the opposite-edge
boundary is the concatenation of all the hyperbola segments.

The algorithm of Mitcbell [Ref. 4] also builds an optimal-path map for an obstacle. It allows for mul-
tiple obstacles, as does Algorithm VI-1 used in conjunction with Algorithm VI-9 below, and also depends on
the analytical characterization of homogeneous-behavior boundaries as line segments or sequences of con-
nected hyperbola segments. His algorithm uses the notion of generalized visibility to build successive sub-
OPMs. It merges OPMs using Voronoi-diagram construction methods from computational geometry, while
algorithm VI-9 must use a more ad hoc approach, since Voronoi diagrams for the more general terrain fea-
tures we consider are not available.

2. An Algorithm for OPM Coustruction for A Single River Scgment

The algozithm to construct the planar partition for a single river segment is similarly straightforward
(see Figure 18). In this case, exactly two shadow boundaries, at most two river-crossing boundaries and one
opposite-edge boundary peed to be constructed. If the river-crossing boundaries intersect, the opposite-edge
boundary will begin at tbeir point of intersection. Otherwise, no opposite-edge boundary will exist. A change
from the obstacle algorithm is the addition to the optimal-path tree of edges whick are crossed by paths, since
these are homogeneous-behavior region roots. Table 7 shows the river-OPM construction algorithm.

As discussed in Chapter ], it is possitle to model rivers, as well as obstacles aud roads, as
homogeneous-cost areas, and so Algorithms VI-4 and VI-6 could be used instead of Algorithms VI-1, V1-2,
and VI-3. But these first three algorithms are simpler.

3. An Algorithm for OPM Construction for A Single Road Segment

The algorithm for a single road segment is somewhat more complicated, although still straightfor-
ward (see Table 8). As discussed in Chapter V (see Figures 19, 20, and 21), the boundaries which will exist
for a road segment are determined by the positioning of the characteristic wedge with respect to the road ver-
tices. Therefore, top-level decision logic for the algorithm is based on the position of the characteristic wedge.
Procedure construct-rd-bdry is called to compute each specific boundary.

4. An Algorithm for A Single Convex High-Cost Exterior-Goal Homogeneous-Cost Ares

The algorithm to compute the planar partition for high-cost area with an external goal is called hea-

opm-high-ext (see Table 9). The equations for each boundary can be found in Appendix A in the Lemma cor-
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TABLE 7
RIVER-SEGMENT OPM ALGORITHM

algorithm single-river-segment-opm (Algorithm VI1.2)
ioput: Optimal-Path Tree with root node N and associated river edge-list R with cost Cr;
cutput; Optimal-Path Map M (a DCEL) and medified Optimal-Path Tree N;
purpose: to construct an OPM for a single isolated river segment;

{
M :=empty dcel structuse;

for Neurr := each river-vertex child-node of N /* construct shadow boundaries */
{
Bdry := Line NcyaN less Half-line NeyedN; /* ie, half-line starting at Ncurr, away from goal */
insert-into-dcel(M,Bdry); /* add shadow boundary to DCEL. */
}
forj:=1to2

{

Focus; := River-Vertex;;

Costj := cost of optimal path from River-Vertex;;

Bdryj := segment of hyperbola branch with foci  /* river-czussing bdry for each river vertex. ¥/
Focus;j and Goal, hyp constant = abs(Cost;j - C;),

such that branch is closer to Focus;;
if Bdryj intersects river segment /* if so, find intersection point. */
Intersect; := intersection point;
else
Bdryj := pull list; /* if not, river-crossing bdry does not exist. */
if Bdry) is not null /* (neither bdry or both bdrys will be null) */

{

Intersect 2 ;= intersection of Bdry| and Bdryz ;
Bdry\ := Bdry; from Intersect; to Intersect(,2 ;
Bdry2 := Bdry2 from Intersect2 to Intersecty 2 ;

insert-into-dcel(M,Bdry)); /* add river-crossing bdry 1 to DCEL. */
insert-into-dcel(M,Bdry?); [* add river-crossing bdry 2 to DCEL. ¥/
Bdry := segment of hyperbola branch with /* find opposite-edge bdry. */

Focusi and Focusz, hyperbolic constant =
abs(Cost; - Cost2), such that branch is closer
to the higher-cost focus, with stariing point at
Intersecti,2, lying away from goal;
River-edgey,2 ;= Line from Intersecty to Btersects ;
insert-into-opd(N River-edpey 2); /* add river-crossing edge to Optimal-Fath Tree, */
}
else
Bdry := segment of hyperbola branchk with /¢ find opp-edge bdry if no river-crossing bdrys. */
Focus; and Focus?, hiypetbolic constant »
abs(Costy - Cost), such that branch is closes .

o thia Seimbian Anct Fancce wilth ntactina vend
W LGS AEau-T00s TS, Bata bk wid R"“"‘g ot

intersection of hyp sud river, lying awasy from goal;
{nsert nto-deaXM,Line from Focusy to Fucusa); /* add river edge &3 bdry */
insert-into-doel( M, Bdry); /* add opposite-edge bdry to DCEL ¥/
} % end of single-river-opm Algorithm */
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TABLE 3
ROAD-SEGMENT OPM ALGORITHM

algorithm single-road-segment-opm (Algorithm VI.3)
input: Optimal-Path Tree with root node N and associated road edge-list R with cost C;
output: Optimal-Path Map M {a DCEL) and modified Optiinal-Path Tree N;
purpose: to construct an OPM for a single, isolated road segment;
{
M := empty dcel structure;
B¢ :=sin"'(C/Cosckground)s /* road critical angle */
Wedge-Ray) := ray from G intersecting road ViV2
at Pt A suchthat ZGAV2 =7t/2 — O;
Wedge-Rayz := ray from G intersecting road VV2

at Pt B such that ZGBV =1/2 — O; /* A is criented to B as V| is to V2 (see Chap V)*/
ifpts A, B, and V1 are erdered "BAV(" /* wedge is "inside" Vi so generate boundary */

{

construct-rd-bdry(road-end/travelling, V1); /* typesb,candd onthe Vi end. */

construct-rd-bdry(read-end/goal,V1);

construct-rd-bdry(near-side-road-travelling/goal,Vi);

ifpts A,B, & V2 are not cadered "V2AB" /* if in addition wedge is not "outside" V2, */
consiruct-rd-hdry(road-travelling/crossing,V1); /* generate type e bdry on Vi end. */

}

else if they are ordered "BViA" /* wedge "straddles” V1 so generate boundary */
construct-rd-bdry(road-shadow,V1); [*typegontbhe Viend ¥/

else if they are ordered "ViBA" [* wedge is "outside" Vi1 so generate boundary */

{
construct-rd-bdry(near-side-rd-travell’g/goal, V2, /* typesd onthe V2 end and f on the Vi end #/
construct-rd-bdry(far-side-road-travelling/goal, V2);

)

if pts A, B, and V2 are ordered "ABV?" /* wedge is "inside" V2 so generate boundary */
{
constrect-rd-bdry(road-end/travelling, V2); /* typesb,cand d on the V2 end. ¥/
construct-rd-bdry(road-end/goal,V2);
construct-rd-bdry(necar-side-road-travelling/goal, V2);
if pts A,B, & V1 are not ordered "V|BA" /* if in addition wedge is not "outside" V1, ¥/

construct-rd-bdry(road-travelling/crossing,V2); /* generate type e bdry on V2 end. */

}

else if they are ordered "AV2B" /* wedge "straddles” V2 so generate boundary */
construct-rd-bdry(road-shadow,V2); /* type g on the V2 end. #/

else if they are ordered "V2AB" /* wedge is "outside"” V2 so generate boundary */

{
construct-rd-bdry(near-side-rd-travell'g/goal,V2); /* typesd onthe Vi end and f on the V2 end. */
construct-rd-bdry(far-side-road-travelling/goal,Vi);
)
} /* end of single-road-opm algorithm */
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TABLE 8 (CONTINUED)
ROAD-SEGMENT OPM ALGORITHM

procedure construct-rd-bdry
; ioput: type of bdry T, vertex V of road, DCEL M, Optimal-Path-Tree N, and Wedge-Ray and Wedge-Ray2
output: revised DCEL M and revised OPT N;
puspose: construct each road-generated boundary of type T;
{j :=3-i; [*ifi=1, j=2 and if i=2, j=1, i.c., j is otherend */
if T = road-end/travelling /* Type "b" boundary */
{Bdry := Ray with vertex Vj, lying on line ViX, such that ZV;ViX = /2+40;
Bdry2 := Ray with vertex Vj, lying on line V;Y, such that £V}V;Y = 3n/2—-6.;

insert-into-dcelM,Bdry1); /* add road-end/travelling boundary to DCEL. #/
insert-into-dcel(M,Bdry2); [* add road-end/travelling boundary to DCEL. ¥/
)

else if T = road-end/goal /* Type "c" boundazry ¥/

{Bdry := the branch closer to Vj of a hyperbola with foci Vj and Goal, and hyp. < onstant = cost from
Vi to Goal via road, starting at point of intersection between hyperbola and type b bdry from Vi;

insert-into-dcel(M,Bdry); /* add road-end/goai boundary to DCEL. ¥/
}

else if T = near-side-road-travelling/goal /* Type "d" boundary */
{if (wedge is pot outside Vj) [* wedge is inside V; & not outside V; */

Bdry :=segment of parab. s.t. focus = Goal, and directrix D_L Wedge-Ray; with D being IGP! from P
(P=A if i=1, else P=B), starts at P, lies away from Goal, ends at inters. with type b bdry from Vj;
else [* wedge is inside V & outside Vj */
Bdry :=segment of parabola with focus = Goal and directrix = line L, L.L Wedge-Ray; such that L is
IGVjl from Vj, starting at P := Vj, lying away from Goal, ending at inters. with type b bdry from Vi;

insert-into-dcel(M,Bdry); [/* add pear-side-road-trvig/goal bdry to DCEL. */
insert-into-opt (N,PV; Near-side); [* add travelled road segment to OPT. ¥/
insert-into-deel(M,PV}); [* add travelled segment as edge bdry to DCEL */
)

else if T = road-travelling/crossing /* Type "¢" boundary */

{Bdry :=ray starting at P and lying along Wedge-Rayi,
(where P=A if i=] and P=B if i=2), lying away from Goal;

ingert.into-dcel(M,Bdry); /* add road-travelling/crossing bdty to DCEL.*/
insert-into-opt (N,edge PV; Far-side); /* add road segment which is travelled to OPT. */
insert-into-dceM,PVi); /* add travelled segmennt as edge bdry to DCEL */
}

else if T = far-side-road-travelling/goal /* Type "{" boundary ¥/
{insert-into-opt (N,ViVjNear-side);
insert-into-opt (N, ViVjFar-side);
ingert-into-dcel (M.line V;Vj); [* road-2dge boundary added to DCEL ¥/
fork:=1to2

{Bdryx := segment of parabola with focus = Goal, and directrix =line L, L L Wedge-
Rayk such that L is GVl from Vi, starting at V; and lying away from Goal;

insert-into-dcel(M,Bdryy); /* add far-side-road-trvig/goal bdrys to DCEL. */
1
}
else if T = road-shadow /* Type "g" boundary %/
{Bdzy := ray from Vi along lice ViG, lying away from Goal;
insert-into-dcel(M,Bdry); /? add road-shadow bdry to DCEL. */
}
) /* end of construct-rd-bdry */
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TABLE 9

HIGH-COST EXTER{IOR-GOAL HCA OPM CONSTRUCTION ALGORITHM

algorithm hca-opm-high-ext (algorithm VI-4)
input: Optimal-Path Tree N, HCA A with n vertices;

output: DCEL M. and modified OPT N;

purpose: to construct the OPM for a high-cost, exterior-goal HCA.

{

fori:=1ton [* add interior bdry for each vertex. */

{
if edge i is visible
ifedge i+1 is visible
B := value returned by construct-high-ext-hca-bdry("visible-edge",i);
else
B := value returned by construct-high-ext-hca-bdry("visible-hidden" i);
else if edge i is hidden
if edge i+l is visible
B := value returned by construct-high-ext-hea-bdry("visible-hidden”,i+1);
else
if edges are on different sides of opposite edge
B := value returned by construct-high-ext-hea-bdry("hidden/diverging",i);
else
B := value returned by construct-high-ext-hca-bdry("hidden/merging”.i);
akl B to BdrySet;
)
BdrySet := value retunied by pair-and-merge-bdrys /* join interior bdrys togetber. */
(BdrySet,"high-ext-hca-interior™);
form BdryTrees from bdrys in BdrySet;
for each BdryTree
{
ficd point X at which BdryTree /* there will be exactly one X per tree */
intereects an opposite edge;
B := value retumed by construct-high-ext-hca-bdry("oppesite-edge” X);
add B to OEBdrySet;
}
fori:=1ton
if Vi conpects a visible and a hidden edge
{

srwse

add construct-high-ext-hca-bdry("comer-cutting”,X) to BdrySet;

B := value returned by construct-high-ext-hca-bdry("shadow",i);

j = other vertex of B

while Bj is not aa opposite edge /* work around the HCA creating shadow */
{ /* bdrys until the opposite edge is found. */
B := value retumed by construct-high-ext-hca-bdry("shadow",j);
j := other vertex of E;
)

}

B := value retumned by pair-and-merge-bdrys /* join opposite-edge bdrys together. ¥/
(OEBdrySct,"high-ext-hcs-exterior”);

add B to BdrySet,

forall B € BdrySet
insert-into-dcel(M,B);

) /* end of hea-opm-high-ext */
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TABLE 9 (CONTINUED)
HIGH-COST EXTERIOR-GOAL HCA OPM CONSTRUCTION ALGORITHM

procedure pair-and-merge-bdrys /* join connecting bdrys together. */
input: BdrySet, and type of region;
output: revised BdrySet;
purpose: to take an initial set of boundaries, pair the ones which first intersect each other, and
propagate a new bdry from each imkersected pair, continuing until all appropriate bdrys are joined.

while BdrySet is changing

{
PairedBdrySet := BdrySet;
while PairedBdrySet is changing
{
for all B; j€ PairedBdrySet where Bjj is unmarked
(
discard B; j from PairedBdrySet;
add B;j from B-’rySet to PairedBdrySet;
intersect ang with Bp,; and truncate both;
add Bp,{™™ and Bi;"™ to PairedBdrySet;
intersect B with BL,& andtruncate both;
add Bjj™™ and Bjx™™ := to PairedBdrySet;
}
for all Bij€ PairedBcrySet -
discard all but the shortest By j from PairedBdrySet;
unmark all bdrys in PairedBdrySet;
for ail Bij and Bj € PairedBdrySet such that Bj adjoins Bj
mark Bjj aod B}y )

)
for all B jand Bjx€ PairedBdrySet such that B j adjoins Bjx
add Bix to PairedBdrySet;
BdrySet := PairedBdrySet;
)
} /* end of pair-and-merge-bdrys. */
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TABLE 9 (CONTINUED)
HIGH-COST EXTERIOR-GOAL HCA OPM CONSTRUCTION ALGORITHM

procedure construct-high-ext-hca-bdry
input: type of bdry T; index of vertex i;
oufput: Bdry, the resulting bousdary;

/* provides methods to construct each type of */
/* bdry of high-cost, exterior-goal HCA. */

purpose: (o construct a boundary generated by vertex i of type T;

{
if T = "visible-edge"

Bdry := curve as specified in Lemma V-4.1;
if T = "visible-hidden"

Bdry :=curve as specified in Lemma V-4,2;
if T = "merging"

Bdry := curve as specified in Lemma V-4.3;
if T = "diverging"

Bdry :=curve as specified in Lemma V-4.4;
if T ="hca-edge"”

Bdry := curve as specified in Lemma V-4.7;
if T = "shadow"

Bdry := curve as specified in Lemma V-4.8;
if T ="opposite-edge"

Bdry := curve as specified in Lemma V-4.9;
if T = "comer-cutting"

Bdry := curve as specified in Lemma V-4.10;
}
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responding to the boundary type (see also Figures 23, 24, and 25). Each vertex of such a HCA is associated
with an internal boundary, whose character depends on whether the edges incident to the vertex are visible or
hidden (and for vertices on two hidden edges, on whetber the vertices nearest the goal for each edge have op-
timal paths which go in the same, or different directions around the HCA, called merging or diverging paths
respectively). These boundaries are computed first, and then procedure pair-and-mesge-bdrys constructs a
network (or networks) of interior boundaries which is connected to the initially-computed boundaries. This
procedure pairs boundaries which intersect, and then plots a new houndary which has an endpoint at the point
of intersection of the paired boundaries. It continues pairing boundaries ard plotting new ones until all the
boundaries are joined together on both ¢nds or intersect an edge of the HCA. Note that deciding which ad-
jacent boundaries should be paired together is not simple, and it may take several iterations for the procedure
to settle on a correct configuration.

The interior boundaries are then joined into trees, and since each interior boundary tree intersects an
opposite edge exactly once, this can serve to begin generation of the extemal opposite-edge boundaries. In
contrast to obstacles, there can be several HCA opposile edges and opposite-edge boundaries. Comer-culting
boundaries are indicated when an interior boundary associated with a vertex actually begins, not at the vertex,
but somewhere along the boundary. Ts algorithm next checks for this situation, which can only happen with
respect to a vertex joining a hidden and a visible edge. Thistypes  ~rtexis also a good place to begin generat-
ing shadow boundaries. Finaily, proceduce pair-and-muige-bdrys is again used, this time with the exterior
shadow and opposite-edge boundaries.

Figures 30, 31, and 32 illustrate the state of procedure pair-and-merge-bdrysat various intermediate
stages in its execution for the example HCAs of Figures 23, 24, and 25 respectively. Edges of the HCAs are
numbered, and boundaries are labeled "i,j", where i and j represent the edges crossed by paths on either side
of the boundary. Boundaries which are paired with anotber boundary at each stage are noted by an asterisk.
Boundaries which are stored in the data structure PairedBdrySet are noted in the figures as dark lines. Figure
30a, 31a, and 32a show the interior boundaries associated with each terrain-feature vertex at the beginning of
the algorithm (beginning at the vertex or associated short-culting point, extending indefinitely into the inte-
rior and then beyond. The current s2t of interior-boundary trees is also shown, with each node labeled by we

boundzry it represents.
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Figure 30
Construction of HCA Interior-Boundary Tree Example 1
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Figure 3la
Construction of HCA Interlior-Boundary Tree Example 2
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Figure 31b
Construction of HCA Interior-Boundary Tree Example 2
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Figure 32
Construction of HCA Interior-Boundary Tree Example 3
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Consider, for example, Figure 31. Figure 31b shows the state of PairedBdrySet with respect to the
HCA after the first pass through the inper loop ("while PairedBdrySet is changing"), where each boundary

ig" in the initial set of boundaries is intersected with the two adjacent boundaries, and the shortest version of
"i,j" is retained in PairedBdrySet. Those boundaries which pair up with an adjacent boundary are marked with
"*"_ fn Figure 31b, "1,6" pairs with "5,6" and *1,2" pairs with "2,3". "4,5" and "3,4" were not marked, aod so
are going to be replaced in PairedBdrySet by the full versions of their respective boundaries at the start of the
pext pass through the inoer loop. After the second pass through the inner loop, all boundaries are marked as
inFigure 3 1¢, so on the next iteration no changes to PairedBdrySet will be made, so the "while changing" con-
dition will fail, ending the inner loop.

As the outer loop ("while BdrySet is changing") finishes its first pass, new boundaries are generated
from each iniersection point of paired boundaries, and these boundaries are placed, unmarked, into Paired-
BdrySet, which replaces BdrySet. This situation is reflected in Figure 31d. Figure 31e reflects the state of
PairedBdrySet after the outer loop has stasted its second pass, and the inner loop bas run until it stabilizes
agzin. Note that some boundaries which were paired after pass one, i.e., "4,5" and "3,4", are in fact intersected
by second-level boundaries instead, and so the truncated versions of the boundaries need to be retracted from
PairedBdrySet and the full versions put back into PairedBdrySet for furtherinteraction with second-level boun-
daries. This illustrates why such this procedure is complicated, because we are not able to tell with a single
pass which boundaries will be paired. Boundary "1,4" is now propagated from both directions from the inter-
section points of "4,5" and "1,5" as well as "1,3" and "3,4". It is truncated at both ends and paired with itself,
after which the configuration is stable. Thus BdrySet will not change further, so the outer loop will halt with
BdrySet as illustrated in Figure 31£. At each stage, the interior-boundary trees are built up until, in Figure 31f,
a single tree results.

In algorithm hca-opm-high-ext, it is assumed initially that there is an opposite point, i.c., a point on
the hidden side of the HCA where two optimal paths go in opposite directions around the HCA. Further, this
assumed opposite point is initially considered a vertex for the purposes of the algorithm, Figure 30 shows a
situation where the algorithm leads to the conclusion that the opposite point does not exist after all, and so
there is no interior boundary incident to it, because there is shoricutting of paths from the outside of the HCA

across the HCA to the goal. The figure also shows a situation where there is more thae one interior-boundary
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tree. There is one exterior opposite-edge boundary incident upon an HCA edge associated with each interior-
boundary tree. It has one endpoint at the point at which a boundary of the tree intersects an opposite edge.

5. An Algorithm tor OPM Construction for A Single Convex High-Cost, Interior-Goal
Homogeneous-Cost Area

A much different algorithm is needed to construct boundaries for the case of a high-cost HCA with
an interior goal point (see Figure 26). The existence of interior boundaries are more predictable without the
need for the iterative checking as in the high-cost, exterior-goal HCA case. It is still necessary, however, to
check the intersections of various boundaries and truncate them appropriately, and insert portions of edges
into the optimal-path tree, which is done at the algorithm’s conclusion. (See Table 10.)

The algorithm proceeds by looking at each HCA vertex in turn, and determining by observing its op-
timal path whether it is a hidden or a visible vertex. If it is a hidden vertex, the path from the vertex will travel
along an edge of the HCA before cutting into the interior, while if it is a visible vertex, the path will go direct-
Iy to the goal. If it is hidden, several intesior boundaries and one exterior shadow boundary are generated, as
well as possibly an opposite-edge boundary. If it is visible, only one exterior boundary, a visible-edge bound-
ary, is generated.

Itis necessary to insert portions of edges into the optimal-path tree according to the traversal charac-
teristics of optimal paths across or along them. For example, it is possible for a portion of an edge from one
vertex to act like a road, where paths feave the HCA interior to travel along the lower-cost edge, and then cut
back in to the HCA when nearer to the gozl. Thus the first portion of the edge would be the root of a
homogen=ous-behavior region characterized by patbs crossing from the interior to the exterior and travelling
along the edge, and the pext pertion of the edge would be the root of another region characterized by paths

crossing Srom exterior to interior. Al this information is not available when processing each individual ver-

-tex, however, so edges which may become region roots are stored temporarily, and at each step when infor-

mation is gained which could rule cut portions of edges as roots, that information is stored as a "mask", which
is used to mask out portions of edges. At the conclusion of the algorithm, these edges and masks are processed
to determisie exactly which portions of edges belong as region roots in the optimal-path tree. Also done at the
conclusion of the algorithm is the intersecting of opposite-edge and shadow boundaries and plotting of new
boundaries in the HCA exterior, much I'ke in the interior of a high-cost, exterior-goal HCA.
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TABLE 10
HIGH-COST INTERIOR-GOAL HCA OPM CONSTRUCTION ALGORITHM

algorithm hca-opm-high-int (algorithm VI.5)
input: Cptimal-Path Tree with root N, HCA A with n vertices;
output: DCEL M and revised OPT N;
purpose: construct an OPM for high-cost, interior-goal HCA;

{fori:=1ton
{if P # Goal, where OPL(V;) =[P | OPL(P)] [*i.e., if path from V lies on edge &2 of HCA */
( /* with other edge called Ej, an interior linear */
E2 := edge containing V;P; /* bdry and two pamabolic bdrys are formed, */
Ej := other edge incident to Vj; /* and an exterior shadow boundary is formed. */

B := value retumed by construct-high-int-hca-bdry("hidden-edge"”,Vi);
B2 := value retumed by construct-high-int-hca-bdry("hidden-edge/goal”, Vi);
B3 := value retumned by construct-high-int-hca-bdry("visible-edge/goal”,P);
B4 :=value returned by construct-high-int-hca-bdry("shadow",P);
add B4 to ExtBdrySet;
intersect B1, B2, B3 & add B1™ " to IntBdrySet; /* they intersect at the same point. */
if B2 intersects Eq at some pt X
{truncate Bz at X;
add B2'™™ to IntBdrySet;
insert-into-opt(N,V;X,"Near-side");
add Et and Mask(ViX) to VisEdgeSet;
Bs := value returned by construct-high-int-hca-bdry("'comer-cutting” X);
add Bs to ExtBdrySet;
} /* if paths from two vertices go opposite ways */
else if (OPL(V;) & OPL(Vi+t) and OPL(Vi+1) € OPL(V:))  /* around HCA, edge is opp edge. */
(B¢ := value retumned by construct-high-int-hca-bdry("interior-opposite-edge”, Vi, Vis+1);
intersect Bs with B2 & add B¢'™™ to IntBdrySet;
X := pt where B¢ intersects Ef;
B7 := value returned by construct-high-int-hca-bdry("exterior-opposite-edge”, Vi, Vis1);
add B7 to ExtBdrySet;
insert-into-opt(N,ViX,"Near-side");
insert-into-opt(N,XVi,1,"Near-side");
}
else
(insert-into-opt(N,By,"Near-side");
add B2'™™ to IntBdrySet;
)
if B3 intersects edge Bz at X
{insert-into-opt(N,ViX, "Near-side");
truncate B3 at X;
add B3™™ to IntBdrySet;
| }
else /* i.e., if path goes from V directly to Goal. */
{B := value retuned by construct-high-int-hca-bdry("visible-edge",V;);
add B to ExtBdrySet;
add E; and B2 to VisBdrySet;
)
post-process-high-int-hca-bdrys;
} /* end of hea-opm-high-int */
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TABLE 10 (CONTINUED)
HIGH-COST INTERIOR-GOAL HCA OPM CONSTRUCTION ALGORITHM

procedure construct-high-int-hca-bdry [* constructs each type of bdry formed by*/
input: type of bdry T; P, the start-point of bdry; /* a high-cost, interior-goal HCA. */
output: Bdry, the resulting boundary;
purpose: to construct a boundary generated from point P of type T;
{if T ="hidden-edge" Bdry := curve as specified in Lemma V-5.1;
if T = "hidden-edge/goal” Bdry := curve as specified in Lemma V-5.2;
if T = "visible-edge/goal" Bdry := curve as specified in Lemma V-5.3;
if T = "interior-opposite-edge" Bdry := curve as specified in Lemnia V-5.4;
if T = "hca-edge” Bdry := curve as specified in Lemma V-35.5;
if T = "shadow" Bdry := curve as specified in Lemma V-5.6;
if T = "exterior-opposite-edge” Bdry := curve as specified in Lemma V-5.7;
if T = "comer-culting” Bdry := curve as specified in Lemma V-5.8;
if T ="visible-edge" Bdry := curve as specified in Lemma V-5.9;
) /* end of construct-high-int-hca-bdry */

procedure post-process-high-int-hca-bdrys /* store bdrys and edges. */
input: VisEdgeSet, the set of bdrys from visible edges, IntBdrySet, the set of
interior bdrys, ExtBdrySet, the set of exterior bdrys, and Optimal-Path Tree N;
output: DCEL M, and revised OPT N;
{foreach edge E € VisEdgeSet
{ for all Maskg E := E less Maskg;
N := value retumed by insert-into-opt(N,E);
}
for each bdry B € IntBdrySet
if another version of B exists
{truncate B and B';
insert-into-dceXM,Birunc);

}
for each bdry B € ExtBdrySet
join-high-int-bdrys(B,ExtBdrySet);
for each bdry B € ExtBdrySet
insert-into-dceM,B);
} /* end of post-process-high-int-hca-bdrys */

procedure join-high-int-bdrys [* joins extenal bdrys. ¥/
input: bdry B1, set of bdrys ExtBdrySet,
output: revised ExtBdrySet;
purpose: to pair bdrys which first intersect, and propagate new ones from their pt of intersection.
{for each B2 € ExtBdrySet such that By and B2 intersect and B1 and B2 are adjacent
{truncate By and B2;
remove original By and B2 from ExtBdrySet;
add B1'™™ and B2"™™ to ExtBdrySet: .

T :=type of new bdry; /* based on edges El and E2 not */
B3 := value returned by /* common to B2"™™ and B2'™™, #/
construct-hca-opm-high-int-bdry(T,Ef,E2) .
join-high.int-bdrys(B3,ExtBdrySet); /* recussively follow bdry outward from HCA. ¥/
}

} [* end of join-high-int-bdrys. */
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6. An Algorithm for OPM Construction for A Single Low-Cost, Exterior-Goal
Homogeneous-Cost Area

The exterior-goal-low-cost-region algorithm shown in Table 11 looks at each HCA vertex in tum,
basing its logic on the initial direction of the optimal path from the verte- being examined (see Figure 27). If
the optimal path from a vertex goes into the HCA interior, two rays, or vertex/edge-crossing boundaries, are
coastructed forming a wedge outward from the vertex and away from the goal. If the optimal path goes along
an edge of the HCA, one of the above boundaries, the one closer to the direction of travel of the optimal path,
is instead a vertex/edge-following boundary, and in addition a parabol’z, or vertex/goal boundary is con-
structed. The third possibility is that the optimal path goes directly into the HCA exterior, i.e., toward the goal.
1f s0, more boundaries may or may not be generated. If a portion of each edge adjacent to the vertex is visible
to the goal, i.e., if for both edges there are paths starting at some points on the edges which go directly into the
HCA exterior, then a visible-edge boundary will emanate from the vertex into the HCA interior.

With the above boundaries generated, two tasks remain. First, each parabolic, oredge-following/goal
boundary must be followed away from the goal to see if it intersects the next ray boundary. If so, a hyperbolic,
or vertex/goal boundary will begin, with one focus at the vertex. This hyperbola must then be followed in tum.
If it intersects a ray boundary, a "distorted-parabolic”, or edge-crossing/goal boundary will begin. As we con-
tinue to follow this sequence of boundaries, hyperbolas and distorted-parabolas occur alternately w.til no in-
tersaction with a ray is found. Note that thig algorithm generates each parabolic and distorted-parabolic
boundary in the initial phase, and then generates hyperbolas as needed in procedure add-hyp-bdrys-for-low-
ext-hca below, which in addition truncates each boundary as necessary.

Although this type of HCA has interior boundaries, which one might suppose would need to be prired
and merged as with the high-cost, exterior-goal cage, in fact it i3 not necessary to do this. The reacon is that
such boundaries are all of the visible-edge type, and because the HCA interior is of lower cost than the sur-
rounding temrain, these boundaries will never intersect. Intuitively in the high-cost exterior-goal case, a path
travels to an edge further away in straight-line distance in order to take advantage of the lower external cost
outside that edge, and at that point, two boundaries would intersect and a third emerge. tere, however, the
path is already in the least costly terrain possible, a'd go further paths will continue to follow the same paths

as those closer to the goal. For each visible-edge boundary, a point of intersection is plotted with the far edge
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TABLE 11
LOW-COST EXTERIOR-GOAL HCA OPM CONSTRUCTION ALGORITHM

algorithm hca-opm-low-ext (algorithm VI-6)
input: Optimal-Path Tree with root N, and HCA A;
output: Optimal-Path Map M (a DCEL) and modified Optimal-Path Tree N;
purpose: construct an OPM for a low-cost, exterior-goal HCA;
{
for each vertex V of A with incident edges E1 and B2 /* consider each vertex and its adjacent edges */
such that Ey = VV) and E2 = VV2, where IV2Gl 2  /* wher: Vi is closer to goal than V2, and */

[ViGl and OPL(V) =[P | OPL(P)] [* whe:e P is the first point on V's opt path. */
{
if VP lies in HCA interior /* if optimal path from V goes into HCA interior */
{
construct-low-ext-hca-bdry(vertex/
edge-crossing,V,V,V2); /* two rays are Snell’s-Law paths across */
construct-low-ext-hea-bdry(vertex/ [* edges Bi and E2 through vertex V */
edge-crossing,V,V2,Vi);
insert-into-opt(N,VV,Far-side); /* add edges to OPT as region roots. */
insert-into-op¥{N,VV2,Far-side);
}
else if VP lies along HCA edge E [* if opt. path from V goes alorg an HCA edge */
{
construct-low-ext-hca-bdry(edge-following/
goal,v,V,V2);,
construct-low-ext-hca-bdry(vertex/
edge-following,V,V1,V2); /* two rays are Snell’s-Law paths across */
construct-low-ext-hca-bdry(vertex/ [* edges E) and E2 through vertex V */
edge-crossing,V,V2,V1);
insert-into-opt(N,VP ,Near-gide); /* add edges to OPT as region roots. */
insert-into-opi(N,VV2 Far-side);

! .
elsz if ((Q1 is in HCA exterior) or (VIQI€ V1V)) /*if both edges are vigible or partially visible */
and ((Q2 is in HCA exterior) or (V2Qz€ V2V))) /* (optimal path from V lies in HCA exterior). */

<vbere OPL(V1) = [Q1 | OPL(Q1)] /* Note: Q; are the first points on */

and OPL(V2) = [Q21 OPL(Q2)] /* the optimal-path lists of each V; */

{

construct-low-ext-hca-bdry(visible-edge, [* vis-edge bdry from V w.r.t. Ey and E2 %/
V,V1,V2);

forizmlto2
if(ViQie Viv) /* add as region root the portion of */

insert-into-opt(N, Q1V, Far-side); /* edge acruss which paths cross. */

else insert-into-opt{N, V1V, Far-side);
}

)
add-hyp-bdrys-for-low-ext-hca(ParabBdrys);
) /* end of algorithm hca-opm-low-ext %/
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TABLE 11 (CONTINUED)
LOW-COST EXTERIOR-GOAL HCA OPM CONSTRUCTION ALGORITHM

procedure add-hyp-bdrys-for-lew-ext-hcs; /* puts hyperbolas between pairs of ray bdrys */
input: ParabBdrys, the set of parabolic boundaries;
output: revised DCEL;
purpose: to concatenate hyperbolic bdrys onto parabolic ones.

{
while ParabBdrys # &
{
select bdry B1€ ParabBdrys associated with vertex Vi aud edge Ej;
truncate B1 and the vertex/edge-following or vertex/edge-crossing bdry B2 emanating
from V;, and associated with edge E; at the point wh=72 they intersect;

B4 := value returned by construct-low- /* bdry is hyperbola inizrsecting one or */
ext-hca-bdry(vertex/goal, Vi, Vj, Vi), /* both rays emanating from vertex V; */

if B4 intersects vertex/edge-crossing bdry
B3 associated with V; and edge By, k+#j,

{
truncate B3 and B4 at their point of intersection;
truncate Bs€ ParabBdrys assoc. with Vg and Ex, g#i, at its intersection with B3 and B4 ;

remove B from ParabBd:ys;
} /* end add-hyp-bdrys-for-low-ext-hca */

of the HCA, and an opposite-edge boundary is generated, which is really just a continuation of the visible-
edge boundary after crossing another edge.

Procedure construct-low-ext-hca-bdry performs the low-level function of generating exch bound-
ary for the low-cost, exterior-goal HCA as needed. For boundaries whose forms are general curves, the reader
is referred to the appropriate Lemma in Chapter V and proof in Appendix A.

7. An Algorithm for OPM Construction for A Single Low-Cost, Interior-Goal
Homegeneous-Cost Area

Algorithm hca-opms-low-ins is the simplest of the four HCA algorithms, in keeping with the simple
pature of the regions and boundaries associated with this type of HCA (see Figure 28 and Table 12). Since a
low-cost, interior-goal HCA generates only one wedge of two rays at each vertex, and these rays are guaran-
teed by the orientation of the HCA edges not to interact, the corresponding algorithm can do its work in one

pass through the list of vertices.
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TABLE 12
LOW-COST INTERIOR-GCAL HCA OPM CONSTRUCTION ALGORITHM

algorithm bca-opm-low-int (algorithm VI-7)
input: Optimal-Path Tree witk root N, and HCA A;
output: Optimal-Path Map M {2 ECR.) and modified Optimal-Path Tree N;
purpose: to construct the OPM for a low-cost., interior-goal HCA;

{
M :=empty dcel structure;

foreachedge ViV2of A
{
Bdry1 :=ray starting at V1, lying away /* two bdrys emanate from each vertex, */
from Goal G thru pi Xj, such that /* at the Snell’s-Law angle with respect */

LGOViV=12-0y, LX1ViV2 =T/2402,  [*toeachedge. */
and cintsinB) = cexs sin 02
Bdry2 :=ray starting at V2, lying away
from Goal G thru pt X2, such that
ZGVaVi=1i2-01, £XaVaVi =T/240:2,
and Cint 8inO1 = coxe 8in 92

insert.into-dcekM,Bdry)); /* add vertex/edge-crossing bdrys to DCEL.*/
Insert-into-deel(M,Bdry2);
insert-into-dcel(M,V1V2); /* add HCA-edge boundary to DCEL */
insert-into-opt(N,edge V1V2 Faz-side); /* add edge which is crossed to OPT. */
}

) /* end of hea-opm-low-int #/

C. EXTENDING THE BaSIC ALGORITHMS TO MULTIPLE CONNECTED RIVER AND
ROAD SEGMENTS
1. An Algorithm for OPM Construction for Multiple Connected River Segments

It is now possible to build on a basic understanding of the nature of boundaries generated by single,
isolated river segments in order to construct the boundaries associated with multiple, connected linear river
segments, or rivers, There may be two or more river segments emanating from a single vertex, but all seg-
ments of a river must have the same crossing cost. it might be thought that the algorithm proposed below to
constmet the ontimal-nath man for multinlae terrain faatures could ba nead to conetruct it for thie kind of ¢er-
rain as well. However, connected river segments are not "decomposable” into their constituent segments.

Decomposability of a set of terrain features is defined as follows.
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Terrain map M with optimal-path tree N is defined as decomposable for path planning into subsets
St and S2if both Sy and S2 are consistent with OPT N. Say that a set of terrain S; which is a subset
of a set of terrain S is consistent with an GPT N coastructed for S if for an OFT N; constructed for
Si considered alone, every node of Nj appears in N, and the parent of every node of N; appears in
the path from the node to the root of N.

In other words, if one subset could not behave in the way it does without the presence of the other,
the terrain is not decomposable. Connected river segments have as part of their nature that at internal vertices,
i.e., where two segments join, there are regions where paths must either cross a river or move away from the
vertex, while for the individual segments, a path could bypass the river segment by simply moving around the
vertex. Thus a set of connected river segments is not decomposable into its individual segments.

Two high-level paradigms in addition to those used for single river segments are useful here. First,
we partially sort the river segments according to their general visibility to the goal, i.e., so that a segment which
is fully or partially occluded by another follows it in tise partial order, and we process the segments according
to this partial order. Thus boundaries which may affect other segments are ulready in place by the time the
other segments are considered. Second, whenever a boundary intersects an occluded segment, an event point
is generated. When a segrics &5 processed, it is necessary to consider each event point and decide whether the
boundary which caused the event point coptinues on the otber side of the river segment. Figure 33 shcws a
river consisting of condected siver segments, and Figure 34 shows a worst-case orientation of segments.

Saveral pew terms must be defibed, General visibility between two terrain features is defined as fol-
Tows. Two features Fi and Fy are gencrally visible with respect to a goal G if theie is a sequence of features
F;, i=1 10 £, such that for all i, F; is visible t0 Fi41. A feature Fjis occluded by another Fj with respect to goal
Gif forevery sequence by which Fiand G are generally visible, Fjiz amember of the sequence. In other words,
Fi is occluded by Fj if it is partially or completely within the shadow of Fj cast by G. An endpoint V of line

- - segment L1 is defined a5 a2 exterior vertexif V is not an endpoint of any other line segment, or if segment L2

of which V is an eadpoint occludes L1. V is defined as an interior vertex if it is not an exterior vertex. Intui-
tively this means that an optimal path from an interior vertex must either cross the river or move away from
the vertex to get past the line segment, while from an exterior vertex an optimal path can simply move around
the vertex and bypass the river. Figure 33 shows the partial ordering of river segments as well as the exl;ﬁor

or interior nature of each vertex.
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The algorithm based on these ideas is complicated by the possibility that rivers may tumn back on
themselves and cizate pockets where, for a high-enough crossing cost, it is cost-effective to move away from
the goal out of the pockets rather than cross a river. This situation is illustrated in Figure 33a, in the vicinity
of vertices 8 through 11. A type of boundary in addition to those presented in Chapter V for single river seg-
ments is generated in this case, although it is very similar to the other types. Whenever an exterior vertex Vy
is encountered in the course of processing river segmeants, a river-crossing boundary is generated for that vez-
tex, as explained in Chapter V. If this boundary does not intersect any segment between V1 and V2, all paths
from immediately on the far side of the river including the path from V2 will go via V. In this situation there
will be a boundary which separates paths which cross a river toward the goal from those which move away
from the goal and eventually go through V2 and then through V. Ateach interior vertex, as well as at the next
exterior vertex, a portion of this boundary will be generated. This type of boundary is called a near-side-river-
crossing boundary and it is exactly the complement of the river-crossing boundary which would be generated
from that vertex if an optimal path from the vertex lay forward across the river. In other words, it starts at the
current river segment and lies forward toward the goal.

An example of a near-side-river-crossing boundary in Figure 33 has one end-point on segment (8,9).
From there, it lies toward the goal until it intersects a shadow boundary which starts at vertex 9. The next por-
tion of the boundary is the hyperbola segment whose axis is the line between vertices 10 and 4. After it inter-
sects the shadow‘ boundary from vertex 10, the boundary is the hyperbola segment whose axis is the line
between vertices 11 and 4. Finally, it ends at the point where it intersects a river-crossing boundary separat-
ing points whose paths go around vertex 5 from thuse whose paths cross segment (7,8). From there an op-
posite-edge boundary begins, separating points whose paths go around vertex 5 from those which go around
vertex 11. A second example of a near-side-river- crossing boundary is in the vicinity of vertex 1.

At each irterior vertex V, the test for a near-side-river-crossing boundary is as follows. If for a point
arbitrarily close to V, but on the near side of the river, called V", the optimal-path list of V" includes Vez, the
currently active exterior vertex, a near-side-river-crossing boundary is generated. The foci are V and the ver-
tex or goal point X such that the cost of a straight-fine path from V to X plus the cost of the optimal path from
X is minimized, and the hyperbolic constant is the cost of the optimal path from V minus the sum of the cost
of the rivers crossed from V to X and the cost of the optimal path from X. In this case, the shaow boundary
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from V may intersect she boundary at a point P. The boundary starts at its intersection with the current river
segment, or if it is the second or subsequent portion of the boundary to be generated, at its intersection with
the previous boundary portion, and ends at point P. If the boundary intersects the river-crossing boundary
generated by Vexy, it ends at that point and the Vext boundary coostitutes the remainder of the boundary.

Shadow boundaries follow the same specifications as listed in Chapter V, namely that a vertex V,
with an optimal path which goes first to point P, generates a shadow boundary which is a ray starting at V and
lying away fiom P on the line VP, but with the variation that it must be considered whether the optimal path
of V crosses the river segment or not. If for V" as defined above, and for V* arbitrarily close to V on the far
side of the river segment, V" can be positioned so as to lie on the optimal path of V*, a aormal shadow bound-
ary results. This is the case where paths from the far side cf the river may cross in tbe vicinity of V, and such
a boundary simply keeps track of which segment the paths cross.

If V" includes in its optimal path the current Vext, it will be the case that V* does so as well, and the
shadow boundary which results will conform to the above specification with respect to V" and will have the
unusual characteristic that it lies on the near side of the river segment. This is the case where points on the near
side of V are caught in a "pocket” for which it is faster to move away from the goal and around Vex than to
cross river segments forward of V. Such a shadow boundary separates points which go to V and then to the
vertex on the pext river segment from those which bypass V and go to the next vertex directly.

If V* includes in its optimal path the current Vex:, but V" does not, the shadow boundary from V will
be formed with respect to V*, and lie on the far side of the river. This is the case where the optimal path of V-

lies on the same side of the river segment as does the optimal path of Vex, but thie optimal path of V* includes
Vext, signifying that patbs on the far side of the river in the vicinity of V will not cross it, but paths on the pear
side will lie generally toward the goal, not being caught in a “pocket” which causes them to move away from
the gosl to avoid crossing subsequent river segments. Table 13 shows the algorithm for construction of mul-

tiple connected river segments.
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TABLE 13
MULTIPLE-CONNECTED-RIVER-SEGMENT OPM CONSTRUCTION
ALGORITHM

algorithm multi-segment-river-opm (algorithm VI1-8)
input: List of river segments R, river-crossing cost Cr, Optimal-Path Tiee N, Goal G;
output: DTEL. M and revised OPT N;
purpose: construct a planar partition and revise the OPT for multiple, connected river segments;
{partially order R so that S; < S; ifi S; obscures part of S; with respect to G;
for each segment S € R in partial order, letting S = V1V2 where V| is closer to G than is V2
{plot shadow bdry from V7;
plot shadow bdry from V2;
intersect bdrys with all subsequent segments, noting an event-point whenever intersection occurs;
if V1 is "exterior"
{vcxt =V
sort event-pts on V1V2 with respect to V1,
including V2 as an event-point;
until a river-crossing bdry is plotted for Vy
orevent-list is empty
{select next event-point B;
E; :=root of region on side of E closerto V;
Cvext i=IEVexil + (VexiG)*l;
Cer = [EEd + (EG)*);
if Cvext> Cer
plot river-crossing bdry with respect to Vexe and Eg;
else
delete portion of bdry B lying away from Goal;
}

}
else

do nothing; [*if V) is "interior". *
if V2 is "interior”

{ V2" := point arbitrarily close to V2 on same side of river

as first leg of optimal path from Vexg;
V2* := point arbitrarily close to V2 on opposite side of river

as first leg of optimal path from Vexg;
if Vext € (V2'G)* and Vext € (V2'G)*

{plot shadow bxlry B1 such that for OPL(V2'G)* = [P | OPL(P)},

B1 :=ray on line V2P starting at V2, lying away from P;

X := vertex or goal such that [* ie, vertex with best cost from V2 to X to Goal, */
IV2X1 + (X G)*l is minimized; [* with hyp cost := C-no. rivers crossed by V2X. */
plot B2 := near-side-crossing bdry with [* note that if intersection i3 beyond Vi, there is */

foci V2 and X, where B2 starts at point of  /# another near-side-crossing bdry which */
intersection with line VV2 and ends at /* intersects Ba. */
itacoantinn with R
)
else if P = P*, where OPL(V?) = [P" | OPL(P)] and OPL(V1*) = [P* 1 OPL(PY)) )
plot shadow bdry on line V2P* starting at V2 lying away from P*;
}
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TABLE 13 (CONTINUED)
MULTIPLE-CONNECTED-RIVER-SEGMENT OPM CONSTRUCTION

ALGORITHM
else [* Va2 is "extetior”. */
if Vext € (V1'G)* and Vexe € (V1¥5)* [*if V2 is "hidden". */

{plot shadow bdry Bj such that for OPL(V1'G)* =[P | OPL(P)],
Bj :=ray on line VP starting at Vi, lying away from P;

X :=vertex or goal such that [* 1e, vertex with best cost from Vi to X to Goal, */
IViX1 + (XG)*l is minimized; /* with hyp cost := Cyno. rivers crossed by V2X. */
plot B2 := near-side-crossing bdry with /* note that if intersection is beyond V2, there is */

foci Vi and X, where B2 starts at point of  /* another near-side-crossing bdry which */
intersection with line V(V2 and endsat  /* will intersect B2. */
intersection with By;
)
else /* V2 is "visible". */
{Vext :=V2;
sort event-pts on V1V2 with respect to V2,
including V1 as an event-point;
until a river-crossing bdry is plotted for V2
or event-list is empty
{select next event-point E;
E¢ := 100t of regiot: on side of E closer to V2;
CVext i= [EVext + (VextG)*h
Ce := [EEd + I(EG)*l;
if Cvext> Cer
plot river-crossing bdry with respect to Vexe and Ey;
else
delete portion of bdry Bg lying away from Goal;
}

join and merge bdrys associated with V{V2, noting all

intersections with obscured segments as event-points.
/* end of "for each segment”. */

)
join and merge all bdrys;
} /* end of algorithm multi-segment-river-opm. */

2. OPM Construction of Multiple Connected Road Segments

Unlike connected river segments, connected road segments are decomposable into their constituent seg-
ments. The basic reason for this is that road segments will not serve to block or hinder paths, but only to operate
as conduits. Therefcre, connected road segments can be decomposed into individual segments by algorithm

Vi-9 below, algorithm VI-3 used on each segment, and the resulting OPM’s merged into a finai OPM,
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D. ADIVIDE-AND-CONQUER ALGORITHM FOR MULTIPLE-FEATURE OPM
CONSTRUCTION

A principal goal of our research is to find an algorithm which will create optimal-path maps for multiple
terrain features of the four types described above. Although the investigation into this nroblem is not complete
in all its details, we propose the following high-level description of such an algorithm (see Table 14).

Methods for constructing Voronoi diagrams (see Chapter I) provide a model for approaches to the con-
struction of an optimal path map for multiple terrain features. Voronoi diagram methods use a divide-and-con-
quer approach, in which the points in the plane are divided into two roughly equal sets, the Voronoi diagrams
of the two sets computed recursively, and the two Voronoi diagrams merged to produce the final one. The first
key question is how to divide the points in the plane. The answer in this case is that in order to support the
merge phase, the piane is partitioned into two half-planes by a line (by convention, a vertical line) which equal-
ly divides the set of points in the plane. The other ey question is whether the two intermediate Voronoi
diagrams can be merged. Standard generalized-Voronoi-diagram construction algorithms provide an affirm-
ative answer to this question, depending on the fact that the boundary betwezn any two Voronoi regions in bi-
nary terrain (i.e., obstacles on a homogenzous-cost background) is a straight line segment or a hyperbola
segment [Ref. 8].

The analogous questions with respect to optimal-path map construction are whether terrain features can
be divided in the same manoer as points, and how two optitinal-path maps with the same goal can be merged
into a single, combined OPM. An encouraging aspect of this problem is that when constructing OPM'’s for
single terrain features, we rely on the optimal paths from only the terrain-feature vertices, which are computed
by standard point-to-point path planners and take all the features of a map into account. Thus the optimal paths
from any veriex will remaia the same regardless of which temain feature3 are incorporated into the OPM,
Anocther important aspect of this problem is the unifying perspective with regard to regions and boundaries
proposed in Chapter V, Section C. Since there are only three types of non-degenerate region roots, i.e., points,
edges traversed length-wica, and adges traversed crose-wice {according to Snell’gz Law), it should be possible
at the intersection of any two general boundaries to generate a new boundary by considering the six types of
boundaries between regions of three possible types of roots. Actually, as discussed in Chapter V, the Spell’s-

Law edges do not comprise a single class of region roots, because edges with different numbers of edge-cross-
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TABLE 14
MULTIPLE-FEATURE OPM CONSTRUCTION ALGORITHM

algorithm multiple-feature-opm (algorithm VI-9)
input: L a listing of lists of vertices and types of each temain feature, and
N, the optimal-path tree associated with Map;
output: M, a DCEL describing the planar partition of OPM associated with Map, revised OPT N;
purpose: to construct an optimal-path map for input map consisting of any number of terrain features;

{

if Map contains only one terrain feature /* base case of the recursion. */
OPM := appropriate single-feature algorithm;
else
{
(Set1,Set2) := value returned by halve-map; [* divide map into two roughly equal sub-maps. */

N1 := N less region roots associated with Set2;
N2 :=N less region roots associated with Sety;
OPM := value returned by multiple-feature-opm(Seti, N1); /* recursively solve each sub-problem. */
OPM3 := value returned by multiple-feature-opm(Set2, N1);
OPM := result of merge-opma(OPM1,0PM2,N1,N2)  /* find OPM by merging two sub-OPM’s, */
)

) /* end of multiple-featurc-opm. */

procedure halve-map
input: Map, the list of lists of terrain-feature vertices and types;
output: a pair of sets such that the first is the left half of the map and the second is the right half;
purpose: divide Map into two roughly equal-sized sub-maps;
{

for each decomposable terrain feature
find the left-most vertex;
compute the median x-coordinate;
for each terrain feature F
if its lel-most vertex is less than the median
Seti := Seti\U{F};
else
Set2 := Set2 U{F};
) /* end of halve-map., */
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TABLE 14 (CONTINUED)
MULTIPLE-FEATURE OPM CONSTRUCTION ALGORITHM

procedure merge-opms
input: OPM and OPMz, DCEL'’s of the two input OPM’s;
output: OPM, the DCEL containing the planar partition of the merged map;
OPT N, the revised optimal-path tree;
purpose: merge two OPM’s into one;
{C := vertical chain such that all terrain features of OPMj are entirely
to its left and all terrain features of OPM2 are to its right;
BdrySet := Set of all B such that B& OPM or B€ OPM2 and B intersects G;
while BdrySet is changing
{ PairedBdrySet := BdrySet;
while PairedBdsySet is changing
{for all B;j€ PairedBdrySet /* where b, 1, j, and k index the regions of OPM. */
where B;j is unmarked
{discard By from PairedBdrySet;
add B;j from BdrySet to PairedBdrySet;
intersect B tBij with Bh i and truncate both;
add Bhl andB,, tinc fo PauedBdrySet,
intersect B.,, with B k L andtruncate boib;
add B; ™™ and Bj ™ := to PairedBdrySet;
}

for all B j€ PairedBdrySet
discard all but the shortest Bj j from PairedBdrySet;
unmark all bdrys in PairedBdrySet;
for all Bj,j and Bjx€ PairedBdrySet such that Bj; adjoms Bjk
mark B; j and Bjx;

}
for all B; jand Bjx€ PairedBdryS:t such that By j adjoins Bjx
add B; x to PairedBdrySet;
BdrySet := PairedBdrySet;
)
foreachnew B’ € BdrySet
{intersect-and- e(B {all bdrys from OPMj assoc with R1});
intersect-and-merge(B’, {all bdrys from OPM2 assoc with R2});

}
} /* end of merge-opms. */

procedure intersect-and-merge
input: B, 2 pew boundary, and BdrySet, a set bdrys potentially intersecting B;
output: revised DCEL M;
purpose: propagate the effects of new boundary B in one of the subordinate OPM’s;
{for each bdry B € BdzySet
if B intersects B
{truncate B and B"at their point of intersection;
find regions R and Rj which are adjacent to B and B’respectively, but not common to both;
construct Bpew by mfemng to the roots of Ri and Rj respectively;
for each boundary B”in BdrySet which B’ pmvxously intersected
intersect-and-merge(B”, BdrySet less B);

}
} /* end of intersect-and-merge. */
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ing episodes enroute to the goal will create boundaries of different analytic characteristics. However, the con-
cept is promising.

To divide decomposable terrain features (see Sectioa C above for a definition of decomposability) of the
input map into two approximately equal sets whose resulting OPM’s can be merged is not difficult. In fact, it
appears that any partition is feasible as long as it does not split a terrain feature, but some will be much more
efficient than others. Of course the advantage of a divide-and-conquer algorithm is its logarithmic performance
in the recursive stage if it is guaranteed that divisions are approximately equal-sized, so any partitioning pro-
cedure should have this property. Also, it should not take an excessive amount of time to accomplish the par-
tition, since this step will play an important part in the overali time complexity. And thirdly, since the merging
step will depend on checking for intersections between ail boundaries of one sub-C2M and all boundaries of
the other, it would be very useful if it were not necessary actually te check most of these boundaries. This
would be the case if at each step in the recursion, the two OPM’s represented temain which did not, loosely
speaking, "interleave”. For such OPM’s, boundaries which lay wholly within the interior cf the two planar
partitions would not have to be checked for intersection.

The merge step depends on the fact that any two boundaries, when they intersect, represent the meeting
point of three regions, one of which is common te both boundaries. A new boundary will emanate from the
point of intersection which separates the two regions which the original boundaries did not have in common.
Ratoer than attempt to study all the special cases of possible region intersections among boundaries present in
the nine algorithms thus far presented, it is preferable to use the unifying approach to boundary generation
which considers the two types of region roots involved and selects from the limited number of boundary types
to find the new boundary. However, since there are infinitely many possible types of Snell’s-Law edges based
on the number of edge-crossings between the edge and the goal, an approximate solution is proposed. Since
boundaries between Snell’s-Law edges are similar to hyperbolas, it is proposed that for all except the varieties
already derived in Appendix A, hyperbolas be used as approximations to the exact curves.

When a new boundary has been generated because of the intersection of two boundaries from different
sets, the effects may propagate into both partial OPM's. This will be, i the worst case, a very expensive opera-
tion, because unlike Voronoi diagram construction, the boundaries between regions are not simple lines, and

the effects are not guaranteed to be local, Bach boundary which is truncated by the new boundary mus: be fol-
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lowed to 1ts end (before 1t was truncated}, and if it intersected other boundaries, these in turn must be recon-
sidered with respect to the new boundary.

Algorithm VI-9 describes this method of constructing an optimal-path map for input maps containing
any number of the seven types of primitive terrain features and connected river and road segments. At each
level of recursion, the algorithm divides the terrain into two roughly equal sets, based on a calculation of the
median leftmost vertex. At the lowest level, that of a single terrain feature, the algorithm calls on Algorithms
VI-1 through VI-8 to construct an OPM for the feature. At higher levels, OPM’s are merged by procedure

merge-opms.
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Vii. ANALYSIS OF DIVIDE-AND-CONQUER EXACT-OPM ALGORITHM

A. SOURCES OF ERROR IN THE ALGORITHM

The divide-and-conquer exact-OPM algoritbm produces a more accurate optimal-path map than the
wavefront-propagation OPM algorithm, but it still has error with respect to the conceptual OPM it models. In
terms of the categories of error discussed in Chapter II, the model-cost versus real-worid-cost error occurs be-
cause of approximations in the terrain database of continuously-varying terrair with 12.5m square cells.

The second category of error, model-computed-cost versus model-optimal-cost, appears in several forms
in the output of this algorithm. The two most significant are discussed bere. First, each boundary whose analyti-
cal form does not have a closed-form solution is represented by a piecewise-linear approximation. These boun-
daries are plotted parametrically, iteratively setting one parameter and solving for tbe other. Foriunately for
the precision of the algorithm, most boundaries have very little curvature (see for example, Figures 22, 23, and
24). Anexact analysis of the impact of this type of error Lias not been done, but the proof-of-concept implemen-
tation for the high-cost, exterior-goal homogenecous-cost area (HCA) plotied twenty or fewer points for each
curve, and in all test cases, error of this type was too small to be visibie in the 1aser-printer output.

What error does occur will bave the effect of causing start points which are close to a boundary to be
placed in an incorect region. These start po.s.its will then be associated with paths which are not quite optimal.
But along a boundary there are two equal-cost paths to the goal from each start point. On an approximate
boundary one of these two patbs will be slightly more costly than the other, This error will be no greater than
the cost-rate in the region times the maximum distance of the piecewise-linear approximation from the actual
curve, Since the approximations seem to be very close to the actual curve in observed cases, it seems safe to
state that this error can be ignored in most practical applications.

A second source of error in the category of model-computed-cost versus mode!-optimal-cost is using hy-
pertolas to approximaie boundaries between homogeneous-bebavior regions having paths with more than two
Snell’s-Law crossings. An exact analysis of the error caused bere has not been done. But for regions wpose
patbs bave multiple Snell’s-Law crossings leading to a region root which is a point, as the regions lie further
and furtber away from the point, they have cost functions (calied "distorted cones™) which have flatter and
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flatter iso-cost contours, leading to boundaries with less and less curvature. The approximating hyperbola
should be closer and closer to the actual boundary as the boundary becomes almost linear. The error in the
computed cost of an optimal path caused by this approximation can be ignored in most applications.

The third category of error discussed in Chapter II, that of model-computed-location versus model-op-
timal-location, occurs only in the situations discussed above where a start point is incorrectly placed on the
wrong side of a boundary. When this happens, the computed path will have a distinctly different behavior than

tbe true optimal path.

B. TIME AMD SPACE COMPLEXITY OF THE ALGORITHM

We begin by analyzing the construction of the optimal-path tree, and then analyze the algorithms proposed
foreach primitive terrain feature type in an isolated setting, because the final algorithm uses the previous coes
as base cases of its recursion.

1. Time and Space Complexity of Optimal.Path Tree Construction

Prior to the execution of the algorithms introduced in Chapter V1, the optimal-path tree (OPT} must

be constructed. A brute-force method which finds optimal paths from each terrain-feature vertex and then in-
serts each path into the OPT would take, using the continuous-Dijkstra algorithm, O(nsL) time in the worst
case, and using recursive wedge decomposition, O(n3) in the average case, where n is the number of terrain-
feature vertices, and L is a measure of the precision of the problem representation. Insertion into the OPT as
described in Chapter VI would take, in the worst case, no more than O(nz) time, because no path list is longer
than n, and there are n path lists to be inserted. The optimal-path tree has no more than one node for each ter-
rain-feature vertex and edge, plus ope for the goal poirr. Thus, its worst-case space complexity is O(n), since
with the assumed terrain constraints, there are O(n) edges. A more efficient way to use the continuous-Dijkstra
algorithm is possible which computes paths to all veriices and builds the OPT in one execution of the algo-
rithm, giving O(n7L) worst-case time complexity. Recursive wedge decomposition can also be modified to
operate this way.

2. Time and Space Complexity of The Single-Obstacle-OPM Algorithm .
Algorithm VI-1 constructs an optimai-path map for a single isolated convex obstacle with respect to

a goal. For an obstacle with n vertices there are at most n shadow boundaries, which can be constructed in
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O(n) time by a depth-first traversal of the the optimal-path tree, generating a shadow boundary for each node
in the tree except the one representing the empty path list. Each hyperbola segment which is part of the op-
posite edge can be constructed in constant time, and there are at most n-2 intersections of the opposite-edge
boundary with shadow boundaries. Thus the cpposite-edge boundary can be constructed in O(n) time, so the
entire OPM can be constructed in O(n) time. Each shadow boundary and each hyperbola segment of the op-
posite-edge boundary can be represented in O(constant) space. Since the optimal-path tree can be stored in
O(n) space, and assuming constant accuracy, the representztion of the entire OPM is O(n) space. (See Figure
17.)
3. Time and Space Complexity of The Single-River-Segment-OPM Algorithm
Algorithm VI-2 constructs boundaries generated by a single river segment. A river segment has ex-
actly two shadow boundaries, at most two river-crossing boundaries, and exactly one river-obstacle boundary
consisting of only one hyperbola segment. Thus there at most five boundaries to construct, each of which can
be constructed in O(constant) time, 50 the time complexity of the algorithm is Q(constant), Similatly, the space
complexity is O(constant). (See Figure 18.)
4. Time and Space Complexity of The Single-Road-Segment-OPM Algorithm
Algorithm V1-3 constructs boundaries generated by a single road seyment. By the analysis of Chap-
ter V, a road segment may have at most fourteen boundaries, each of which can be constructed in O(consiant)
time, using O(constant) space. Thus the time and space complexity of Algorithm VI-3 are both O(constant).
(See Figure 20 and 21.)
5. Time and Space Complexity of The High-Cost-Exterior-Goal-HCA-OFM Algorithm
Algorithm VI-4 constructs the planar partition for a region with higher cost than the susrounding ter-
rain with a goal point outside the region. It has exterior boundaries which are similar in pumber to those
generated by an obstacle, except that there may be as many as three opposite-edge boundaries. Thus, by the
same reasoning as for obstacles, the construction of exterior boundaries has worst-case time and space com-
plexity of O(n).
However, the interior boundaries are more time-consuming in the worst case, because of the way
boundaries may intersect. (See Figures 22, 23, 24, 30, 31, and 32.) Bach of the n HCA vertices i3 associated

with an interior boundary. In the worst case, exch pair of these boundaries intersects and a third boundary
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begins at the intersection point, giving n/2 new boundaries, and each pair of new boundaries intersects and
another begios, {or n/4 new boundaries at the third level, and so on until a final boundary occurs which con-
nects all the others. In this case, there are n+n/2+n/4+0/8+...+1 boundaries. There are in the limit n/(1-1/2) =
2n boundaries.

There does not appear to be a simple way to determine for a boundary which of the two adjacent
boundaries will be paired with it. An iterative check which accomplishes this is outlined in procedure pair-
and-merge-bdrys under Algorithm VI-4, (see Section A4 of Chapter VI and Figure 30). This procedure takes
at worst (in a very pathological case), o-2 passes through the inner (“while PairedBdrySet is changing”) loop,
which itself processes n boundaries ("for all B;;..."). The outer ("while BdrySet is changing") loop, which
checks forintersections by newly propagated boundaries with already-paired boundaries, could also take O(n)
passes in the worst case. Thus procedure pair-and-merge-bdrys has worst-case time complexity of O(n3).
This measure dominates the O(n) complexity of the exterior boundaries, and so the worst-case time complexity
of Algorithm VI-4 is O(n3). The space complexity is O(n) because at most 2a interior boundaries, n-2 shadow
boundaries, and n-2 portions of opposite-edge boundaries exist.

6. Time and Space Complexity cf The High-Cost-Interior-Goal-HCA-OPM Algorithm

Algorithm VI-5 constructs the OPM for a high-cost HCA with an interior goal point. It has much
lower time complexity than the high-cost, exterior-goal case, because the interior does not have a number of
intersecting boun-dariu from which more boundaries may emanate. In fact, for each vertex, at most one ex-
terior and four intezior boundaries are generated, as well as additional boundaries for each pair of visible edges
aod each interior opposite-edge boundary. Both the exterior visible-cdge boundaries and the exterior opposite-
edge boundaries display the same behavior as obstacle opposite-edge boundaries, so that all of them together
have no more than O(n) segmenis. The only iterative loop in the algorithm is the outer one whick processes
cach of the n vertices, so the overall worst-case time complexity is O(n), 23 is the space complexity. (See Figure
25.)

7. Time and Snace Comnlexity of The Low.Cost-Exterior-Casl-HCA.OPM Algorithm

Algorithm VI-6 constructs the OPM for a HCA of lower cost than the surrounding terrain and ap ex-
terior goal. This algorithm generates at most four boundaries per HCA vertex., Although there are interior boun-

daries similar to the high-cost, exterior-goal case where much computing effort was required to construct them,
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in this case they are never mutually intersecting. Thus the entire algorithm has time complexity O(n). The
space complexity is also O(n). (See Figure 27.)
8. Time and Space Complexity of The Low-Cost-Interior-Goal-HCA-QOPM Algorithm
Algorithm VI-7 constructs the OPM for a HCA with lower cost than the surrounding terrain, and a
goal inside ibe HCA. This is the simplest of the four HCA cases, because there are exactly two linear boun-
daries emanating from each HCA vertex. Thus the time and space complexity is O(n). (See Figure 26.)
9, Time and Space Complexity of The Multiple-Connected-River-Segment-OPM Algorithm
Algorithen VI-3 constructs an OPM for multiple connected river segments. The time complexity of
this algorithm depends on how many "event peints” and new boundaries occur ateach segment An event point
occurs on a river segment at each place that a boundary intersects it and denotes a point at which the algorithm
must check for a continuation of the boundary on the other side of the segment. Since a river segment’s boun-
daries will only intersect river segments in its shadow, the worst-case time complexity happens when the siver
"doubles back” on itself. Consider a sequence of connected river segments as in Figure 34. In this example,
the closest two river segments to the goal, and each subsequent pair of segments, are positioned so as to cast
two shadow boundaries which create event points on the next segment. Since in this example, the cost of the
river is so small that each river-crossing boundary begins "outside” any event points on the segment and does
not intersect any shadow boundaries, the shadow boundaries all continue to the next level of river segments.
At the first level, four boundaries begin, and at each subsequent level, there are three new boundaries plus the
continuation of boundaries from previous levels associated with event points. The result is that on each river
segment, say at level i, there are 3i+1 possible boundaries generated. So for a sequence of river segments with
0 vertices, it is possible to have Y1 on/2 (3i + 1) = 3078 - Tn/4 total boundaries over the entire set. Thus the
worst-case time complexity of Algorithm VI-8 is O(nz). Since there are O(nz) boundary segments, the worst-
case space complexity is also O(nz).
10. Time and Space Complexity of The Multiple-Feature-Divide-and-Conquer-OPM Algorithm
Algorithm VI-9 s the algorithm which takes OPM’s for individual decomposable tesrain features and
merges them into one OPM. It uses the divide-and-conquer paradigm, and spends O(n) titne dividing the map
at each stage of size n, by standard median-finding algorithms from computational geometry. Le? the time

complexity of the algorithm itself be expressed as T(n). Then the recursive application of the algorithm to both
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halves of the map will take 2T(n/2) time. Thus the dividing, recursion, and merging will take T(n) = O(n) +
2T(n/2) + O(f(n)), where f(n) is the time complexity of the merge step.

The procedure merge-opmsis very similar to procedure pair-and-merge-bdrysassociated with Al-
gorithm V-4 for high-cost, exterior-goal HCA OPM’s, which joined the interior boundaries and propagated
new opes as needed. It is subject to the same possibility that multiple levels of newly-propagated boundaries
may occur, and has the added complexity that for each boundary truncated in one of the subordinate OPM’s,
tbe procedure intersect-and-merge must be performed to reconstruct any other boundaries which previously
intersected tbe truncated boundary but no longer do so. By the sarae reasoning as paragraph 4 above, even as-
suming that procedure intersect-and-merge has O(constant) worst-case time complexity, procedure merge-
opms operates in O(n3) time. In fact, procedure intersect-and-merge operates in O(n) time in the worst case,
because there are at most O(n) boundaries which a boundary can possibly intersect. Thus, procedure merge-
opms has worst-case time complexity O(n‘). We note also that the base case of the recursion requires the solu-
tion of a single-terrain-feature algorithm, which may bave as much as O(n3) time complexity. Thus the
worst-case time complexity of the entire algorithm may be stated as T(n) < O(n) + 2T(n/2) + O(n"), or

T(n) < 2T(0/2) + O(n")

for T(1) S O(m® ), where m is the largest number of terraip-feature vertices which occur in a high-cost, ex-
terior-goal HCA. Expanding this recurrence relatiog, gives, by induction on the depth i of the recursion, that
for some constant ¢,

T(0) S 2T@2Y) + cin’(1 - 172361,

Letn=2% assuming that k is an integer. Then at the last splitting step, i=k, and we have that

T(n) S 2T(1) + cin¥(1 - 12°%D),

But for the base case, we have that T(1) S cam” for some constant €2, 50

T(n) S 2%eam® + cin’(1 - 1220

T(n) S czom’ + c1a* - 8 cin.

Since m S b, Algorithm V1-9 has worst-case time complexity T(n) = o).
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C. EMPIRICAL PERFORMANCE OF THE ALGORITHM IMPLEMENTATION

The high-cost, exterior-goal case, was implemeated as a proof-of-concept program. The high-cost, ex-
terior-goal HCA was chosen because it was the most complex of the seven cases and incorporated most of the
types of boundaries. The implementation was not intended to be particularly efficient, but was primarily
designed to corroborate the shapes of various boundaries when compared with multiple runs of & point-to-
point weighted-region path-planning implemeniation by Richbourg [Ref. 21). Figures 22, 23, and 24 repre-
sent results of the OPM implementation overlaid on vectors representing the initial directions of a dense
sampling of ¢ptimal paths from Richbourg’s "Snell’s Law" program. OPMs of fairly simple complexity such
as the above three figures took four to six minutes apicce to construct, not counting the time necessary to find
optimal paths from each terrain-feature vertex using Richbourg’s point-to-point path-planner [Ref. 21]. This

implementation was done in C-Prolog on a VAX 11/785 running under BSD 4.3 Unix.
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YiII. CONCLUSIONS

A. GENERAL

In this research we developed two approaches to the construction of a planar partition for optimal-path
maps (OPM). The first is an extension of the grid-based wavefront propagation algorithm for point-to-point
path planning, for which we implemented and analyzed three versions. The :«Jecond isbased on spatial reason-
ing about how optimal paths behave in the presence of terrain features, leading to a divide-and-conquer algo-
rithm. We assume that paths lie in free terrain consisting of five types of regions: hor:ogeneous-cost
background, convex polygonal obstacles, piecewise-linear rivers with a fixed crossing cost, piecewise-linear
roads with a constant cost-rate, and convex homogeneous-cost areas. Additionally, we assume that no two fea-
tures share a vertex. We assume that the mobile agent is of negligible size with respect to the surrounding ter-
rain, and that the terrain is fixed and known.

Point-to-point path-planning algorithms require anywhere from O(n’ log n) time for binary terrain
{visibility-graph methods {Ref. 1) to O(n7L) time for homogeneous-cost areas (continuous-Dijkstra algorithm
[Ref. 15]), where n is the number of terrain-feature vertices and L is a2 measure of the precision of the problem
reprcsentation. One way to decrease the amount of run-time complexity of path-planning at the expense of in-
creased preprocessing time and increased storage requirements is to construct optimal-path maps (OPM) which
group optimal paths from all start points on a map with respect to a goal point by partitioning the plane into
regions whose paths behave similarly. At run-time standard point-location techniques from computational
geometry can be used to locate a start point in a region of the OPM in O(log n) time, and the optimal path can
be reconstructed based on the known behavior of paths in the region.

B. COMPARISON OF WAVEFRONT-FROPAGATION TO SPATIAL- REASONING
APPROACHES TO OPM CONSTRUCTION

The spatial reasoning approach to optimal-path-map construction is clearly preferable to wave{ront
propagation for applications requiring low error in the cost of the solution path compared with the cost of the

actual optimal path, Otherwise, the wavefront-propagation approach using the diverging-path version seems
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preferable because it does not depend on the labeling of vertex or edge cells, and is simpler than the exact al-
gorithm, when the cost of constructing the optimal-path tree isincluded. The most accurate wavefront-propaga-
tion OPM algorithm, the vertex-edge version, requires an additional preprocessing phase which fits polygons
to grid-based terrain features and assigns vertex and edge labels to cells. This terrain preprocessing is also
necessary in the spatial-reasoning approach used on large-scale cross-country terrain data, because Defense
Mapping A gency provides data in the form of 25 meteror 12.5 meter square grid cells from which the polygonal
terrain features of the spatial-reasoning approach must be derived. Since implementation of wavefront propaga-
tion is simpler than the exsct-OPM divide-and-conquer algorithm, it may be preferable in applications which
can afford the 7.6% inaccuracy to use the vertex-edge version of wavefront propagation.

While wavefront propagation would seem to be preferable if accuracy is not a factor, it should be noted
that the complexity of wavefront propagation is based on the number of cells in the input map, not the num-
ber of terrain-feature vertices, so the two time complexity measures are not precisely comparable. However,
for a grid-based map of O(m) cells, with a corresponding polygonal map of v vertices, if it could be said that
the frequency with which a cell includes a vertex would be constant as the size of the map increased, v would
increzse linearly as a function of m. By this reasoning, we could expect a typical polygonal map for a grid with
m cells to have O(m) vertices, so the measures are approximately comparable.

Actual average performance could give different results from worst-case analysis. Since the spatial-
reasoning-OPM divide-and-conquer algorithm was impiemented only for one of the seven cases as a test-of-

concept instrument, actual performance tests of the exact-OPM algorithm were not possible.

C. USEFULNESS OF THE OPM APPROACH TO PATH PLANNING
Since the OPM approach to path planning trades preprocessing time and increased storage for improver?
speed at run-time, it will be useful in applications which require real-time response to a path-planning query,
such as autonomous-vehicle or missile path-planning, or where multiple queries over the same terrain are ex-
pected, for example, in a terrain-analysis decision aid for tactical military units.
Two major objections to the OPM appioach are its preprocessing time and its storage requirements, Cer-
tainly preprocessing will take looger than current path-planning methods. However, the non-automated ap-
proach to terrain navigation in maoy domains, which has been to prepare paper maps well abead of time for
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distribution to users, could serve as a model for OPM preprocessing, wherein an organization such as Defense
Mapping Agency could devote centralized resources to the preprocessing phase and distribute standard OPM
databases so that field units or vehicles would have to devote resources only to the run-time phase.

A second objection to the OPM approach is the need for increased storage. However, the cost and com-
pactness of storage media is constantly being reduced by research and development efforts. OPM databases
could be recorded on optical disks or "digital paper”, allowing space for a whole array of OPMS covering an
approximation of the four-dimensional solutivn for a given geographical area. A typical OPM for an area of
20 by 20 kilometers might include on the order of 800,000 boundary segments (100 vertices per square
kilometer times 400 square kilometers giving on the order 0£ 40,000 boundaries, times 20 segments per bound-
ary), each requiring two points of two coordinates each, or 3.2 megabytes of storage. For a four-dimensional
array of OPM's representing all optimal paths from any start point toa sampling of perhaps 10 goal points per
square kilometer, or 4,000 OPMs, 12.8 gigabytes would be required. As of 1989, 5-1/4-inch disks using digi-
tal-paper technology are commercially available which store 1 gigabyte each [Ref. 45]. The approximately
thirteen such disks needed to store a full set of OPMs would be easily transportable. A library of OPMs for
various potential areas of operation could be maintained, for example, much as libraries of paper maps are
maintained.

D. AREAS FOR ADDITIONAL RESEARCH

The terrain typa assumed herein do not include non-convex polygons, even though much real-world ter-
rain would be difficult to model accurately without them. Thus, it is important to determine how to incorporate
non-convex polygons into the optimal-path map algorithms presented. With the unifying view of regions and
boundaries based on rgion cost functions, this task seems attainable with additional research.

The boundary between regions where one or both regions have paths which cross multiple Spell’s-Law
edges ent route to a region root which is a point has not been characterized analytically. In the current algo-
ritbm, it is proposed that such boundaries be approximated by hyperbolas, and it is thought (without proof)
that such an approximation introduces very little error. However, a better approximation could be used tg in-
tersect with other cost functions to determine boundaries on 2 much less ad hoc basis than is done in this dis-

sertation.
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One specific place in which improvement in efficiency could have great effect on the overall exact-OPM
algorithm is in constructing the interior boundaries of an exterior-goal, high-cost HCA inless than O(n‘) time.
OPM'’s for all six other primitive terrain-features can be constructed in C(n) or less time, and for multiple con-
nected river segments in O(nz) time, and it is this single case which drives the divide-and-conquer algorithm’s
worst-case time complexity to O(n‘). In addition, 2 merge procedure for the exact-OPM divide-and-conquer
algorithm which had efficiency more in line with that of Voronoi diagram construction would improve over-
all performance.

A four-dimensional solution is needed in order to make the OPM approach usetul in most domains. The
solution consistent with the approach herein is to create multiple OPM’s for a sampling of goal points in the
plane, and then choose the OPM to use at run-time based on the proximity of the query goal point to the goal
point of one of the OPM's. Perhaps more efficient methods exist which would characterize boundaries be-
tween four-dimensional regions in a space of all start and goal points, a conceptual generalization of the two-
dimensioaal solutions reported here for start points and a fixed goal. In other words, the four-dimensional
hyperplane would be partitioned into regions whose pathis were similar.

It would be very instructive, as well as practical, to implement a complete two-dimensional path-plan-
ning system, from construction of an optimal-path tree for the four types of terrain used herein through OPM

coostruction, and including a run-time sysi¢m to accomplish point location and path reconstruction.
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APPENDIX A - THEOREMS

A. OVERVIEW

In this appendix the theorems which form the basis of the research reported herein are presented, along
with associated lemmas, corollaries, and fundamental assumptions. The theorems follow in the same order in
which they are discussed in the body of this report, and are numbered by chapter and theorem. Lemmas and
corollaries are numbered as extensions of the theorem to which they apply. First, some notation used in this
appendix and throughout the report is presented. Then three theorems and a fundamental assumption with three
associated corollaries are presented which provide a theoretical foundation for the discussions of Chapter I.
Next six theorems are presenied which state the basic boundary equations as developed by the unifying view
of region cost functions. Seven theorems from Chapter V, one for each of the three terrain-feature types
obstacle, road segment, and river segment, and four for the four cases of the homogeneous-cost area, are
presented. The definition of homogeneous-behavior region used in this appendix is the set of all points whose
optimal paths have the same path list.

B. NOTATION

The foliowing notation is introduced for use with respect to path-planning.

Example Description

P A point in Euclidean n-space.

) 20] The straight-line segment from P to Q

PQ A feasible path from P to Q

PQx The i feasible path from P t0 Q

rQ* Optimal path from P to Q

OPL(P) Optimal-path list (sequence of edges and vertices encountered) of P,

OPL(P) = [P,QIOPL(Q)] The path list from P through Q shown in Prolog-style list notation
(i.e., lists are enclosed in braces, commas separate elements, and the
entry followirg a vertical line ("I") is the "rest” of the list). '

PQ)l The cost (weighted distance) from P to Q via path (PQ);.
dP.Q The Euclidean distance between P and Q.
((PQX(QR)) A feasible path from P through Qto R,
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PQiC (PQX(QR)) Set notation applies to paths as if to their path lists, treating them as

QP @ (PQX(QR);))  ordered sets, e.g., (PQi is a sub-path of (PQ)(QRY);), but

(QP); is not a sub-path of (PQ)i(QR);).
. Pe (PQX Points are considered elements of paths.

(PQ = RS)jiff (PQC (RS)jand RS (PQ)i  Two paths are equal if Vi, the k™
clements of the path lists of the two paths are the same.

Cpq The cost (weighted distance) of a path from point P to point Q

n The cost rate in region i.

61 Angle cfincidence or refraction of a path across a Snell’s-Law edge.

Y= sin”(r]/rz) Critical angle with respect to a Snell’s-Law edge separating

regions of cost-rates r1 and r2, whererp <r2.

VAGB The characteristic wedge with vertex at G and edges through A and B.
This is defined with respect to road segments such that G is the goal
point, A and B are points on the line of the road segment, ray GA forms
angle 7U2 + ¥ with the segment, and ray GB forms an angle /2 —
with the segment, where / is the critical angle as defined above.

C. BASIC THEOREMS

THEOREM I-1.Given optimal path (AB)*, VP € (AB)*, (PB); = (PB)* if (PB);  (AB)*, i.c., any sub-
path of an optimal path is also an optimal path. (The generalization of this concept is known in some contexts
as the principle of optimality, the dynamic programming principle, or the Markovian property [Ref. 46].)

PROOF I-1:(Proof by Contradiction) Given points A and B and path (AB)1 = (AB)* such that (AB)*! = c*,
points P and Q such that P € (AB)* and Q € (AB)*, where paths (AP), (PQ) and (QB) are such that
((APXPQ)(QB)) = (AB)* with I(PQXQB)i=c1,and Q" & (AB)*. (See Figure 35.)

Assume 3 (PQ’) and (Q'B) such that K(PQ'NQ'B)) = c1’, and c1’< c1. Then 3 (AB)2 = ((AP)(PQ')(Q;B
~=))such that KAB)Y = c* - c1 +¢1’.- But c*-c1+ ¢y’ <c*,s0 KAB)l < KAB)*l, which contradicts the op-
. timality of (AB)*. ¢

THEOREM I-2. In terrairi consisting of a homogencous-cost background on which is placed homogenequs-
- cost polygons, optimal paths change directions only at terrain feature vertices and edges. Note that the terrzin

defined in Chapter II, Section E, are specializations of this type of terrain. (See Figure 36.)
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Principle of Optimality for Path Planning
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(a)

(b)

cost-rate = r

cost-rate = r X
P

1

cost-rate = r

Figure 36
Optimal-Path Turn Points
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PROOF I-2: Consider point X on optimal path (AB)*, with P€ (AB)* and Q € (AB)*arbitrarily closeto X
such that (PXXXQ)) € (AB)*, i.e., P and 7 are on opposite sides of X on path (AB)*. Assume P, X, and Q
are not colinear (i.e., X is a tum-point). Among terrain consisting of line segments and polygons, P and Q can

be made close enough to X so that there arc only four possible placements of P, X, and Q:

(1) P, X, and G are in areas of equal cost, X is not coincident with a terrain feature vertex, and line

segment PQ does not intersect any terrain feature edge.
(2) P, X, and Q are in areas of equal cost, and X is coincident with a terrain feature vertex.

(3) X is in an area of equal cost with either P or Q, but not both. Assume without loss of generality
that P and X are in an area of cost r1 and Q is in an adjacent area of cost r2. Additionally, X is not
on 2 tzrrain fzature edge, (PX) does not cross any edges, and (XQ) crosses exactly one edge, the

edge bewween the two areas of concemn.

(4) X ison the terrain feature edge separating an area of cost 1 of w' ich P is a member and adjacent

area of cost r2 of which Q is a member, Additionally, neither (FX) nor (XQ) cross any other edges.

Assume case L (PXHXQ)) = (PQ)* by the prisciple of optimality. S¢ {PX) + KXQI S ﬁ:. because

of the uptimality of (PX}(XQ)) (2., the cost from P to Q via X is less than the staaight-line comt from P 1o Q).

So it is also true that IPX)r +!{HQIr S IP_QI,’r. Now VR 2n4 S, the Fuclidean dissance besween R and
S i3 less than or eqnal to the distance along any general path between R and S. So {PXir 2 PXi/r ana
XQik 2 5&'—5%'. (By the notational convention that i(RS)! is the weighted distanse, ar cost, between K and
5, (RS is the Euclidean distance of (RS) if (RS) lies entirely in an area of cost rate r.) Therefore PXlfs +
KQlr 55 PQYr. But since P, X, and Q are not collinear, this violates the triangle inequality, so cass 1 is not

possible.

It is clear, by example. that case 2 is possible. Consider X coincident with the comer of a reviancular
ghstacle O, with P and Q not intervisible, but closer 1o X than to any other vertex of O. (F}'{" }?6) = (PQy* in

this case, Gemonstrating thas case 2 is possible, i.e., itat optimal paths may turx at terrain-feature vertices.
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Assume case 3. Let Y be the point at which (XQ) crosses the edge. Then by the same reasoning as for
case 1 above, it is contradicted that P, X, and Y are not collinear, i.e., X is not a turn-point, so case 3 is not

possible.

Richbourg [Ref. 20] proves the applicability of Snell’s Law to describe the angles of incidence and refrac-
tion of an optimal path across an edge as in case 4, demonstrating that this case is possible, i.e., that optimal

paths may turn as they cross terrain-feature edges.

Thus the only turn-points in optimal paths in terrain consisting of homogeneous-cost polygons on a

homiogeneous-cost background are coincident with terrain feature vertices or edges. ¢

ASSUMPTION 1.3, General-Position Assumption: No terrain-feature vertex or edge interior lies on a non-
trivial homogeneous-behavior-region boundary, i.e., a homogeneous-behavior boundary other than those of
the homogeneous-behavior region of which the vertex or edge is the root, or the terrain-feature edges inci-

dent upon the vertex or edge.

COROLLARY I-3.1:There is a unique optimal path from each terrain-feature vertex and edge interior.

.- PROOF I-3.1: (Proof by Contradiction) Assume that there were two optimal paths from a terrain-feature ver-

tex or edge interior. Then the vertex or edge would lie on a non-trivial boundary, by the definition of a bound-

ary. But this contradicts Assumption I-3. ¢

COROLLARY I-3.2: There is a unique homogencous-behavior region root associated with each

- homogeneous-behavior region, where a region root is the first vertex or edge crossed by optimal paths which

start in the region.
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PROOF 1-3.2: From the definition of a homogeneous-behavior region as the set of points whose optimal paths
to a goal point have the same path list, the path lists from all start-points in a region are identical, so the first
elements of the path lists are also identical. Thus there is only one root per homegeneous-behavior region. As-
sume there existed two homogeneous-behavior regions which shared the same root. Since a region consists of
ali points with identical optimal-path lists, then JOPL = [Ei[Rest1] and30PL2 = [Ey[Restz] 3uch that Rest
# Resta. By the definition of a bourdary, E; would thus be on the boundary between region 1 and region 2.
By Theorem I-2, E1 must be a terrain-feature vertex or edge, but this contradicts the general-position assump-

tion. Thus there is only one homogeneous-behavier region per root. ¢

DEFINITION I-3.3:A region R is star-shaped if 3P € R such that VQ € Rand VX € PQ, X € R.

COROLLARY I-3.4:Homogeneous-behavior regions are star-shaped with respect to their region roots.

PROOF I-3.4: By the definition of a homogeneous-behavior regicn, all start-points in the region have the
same optimal-path list, with, by the definition of a region root, the same first element. By Theorem I-2, the
optimal path from each start-point to the root is a straight line segment. By the Theorem I-1, all points along
the line segment have optimal paths lying along the line segment, so sharing the first element of theit optimal-
- path lists as well, and so by Corollary I-3.1 sharing optimal-path lists. Thus all points along each such line seg-

ment lie in the same homogenecous-behavior region. ¢

THEOREM I-4: Given a two-dimensional map of a finite number of linear and polygonal terrain features

and a goal-point. it has a unique optimai-path tree.

*'PROOF I-4:Given a two-dimensional map M of linear and polygonal terrain features and a goal G, each point
S in M either has an optimal path, i.c., the feasible path of minimum cost, or else has no feasible path to G. If
- it hae an ontimal path, then by the definition of 2n optimal-path list and Theorem 1.2, it alco has an ontimal-
path list. If it has no feasible path, it is associated by convention with the optimal-path list ({J,G], where [] rep-

resents the null list. Define the relation R = {(P1,P2) | OPL(P1) = OPL(P2)}, i.c., two points are related by R
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if and only if their optimal-path lists are identical, Since identity is an equivalence relation, so isR, soR com-
pletely partitions the plane into sets of points with identical optimal-path lists. Since this is the definition of a
homogeneous-behavior region, the plane is completely partitioned into homogencous-behavior regions. Since
there are a finite number of terrain-feature vertices and edges, there are a finite number of homogeneous-be-

havior regions.

A directed acyclic graph can be used to represent a partial order ar..ung its nodes [Ref. 36]. A partial order
of aset S is a binary relation U such thatV a € S, aUais false , i.e., U s imreflexive, and Va,b,andc € S,
if aUb and bUc, then aUc , i.e., U is transitive. [Ref. 36] The set of all homogeneous-behavior regions in map
M is partially ordered by their optimal-path lists as follows. Let U = {(P1,P2) | P1 CP2}, i.e, optimal-path list
P- precedes optimal-path list P2 in the partial order if P is a proper subset of P2. Because the relation "proper
subset” induces a partial order on a set whose elements are sets, the relation U also induces a partial order on
the set of optimal-path lists, and hence on the set of homogeneous-behavior regions, of map M with respect
to goal G. In fact, because of the uniqueness of optimal-path lists from region roots, a specialization of the
directed acyclic graph, the tree, may be used to represent the partial order of homogeneous-behavior regions.

We call this tree an optimal-path tree, because it represents the optimal paths of map M.

Now considei the homogeneous-behavior regions in M with optimal-path lists consisting of only one ele-
ment. Since all optimal-path lists for optimal paths to G have by definition the point G as their last poirt, and
by the definition of homogeneons-behavior regions as the set of points with identical optimal-path lists, there
is only one region with a single element in its optimal-path list, the region with the optimal-path list (G}, and
(G] is a subset of all other optimal-path lists. Thus [G) precedes ail other optimal-path lists in the partial order,
and so is the root of optimal-path tree Tm,G, the optimal-path tree associated with map M with respect to goal

point G. ¢
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D. PROOFS FOR BASIC BOUNDARY EQUATIONS

. xIEOREM V-0.1: (Boundary between two regions with .aths which go initially to two different points)
Given goal point G and two adjacent homogeneous-behavior regions of cost rate r whose region roots are
points Vi and V2, costs c1 = {(ViG)*| and c2 = {V2G)*I (the costs of optimal paths from V1 and V2 respec-
tively) where without loss of generality it is assumed that ¢2 > c1, the boundary between regions 1 and 2 isa
portion of the hyperbola branch which is closer to V2 than to V1, and is described by
(Equation 1) x ) = ¢
P
where a= (c2 - ¢1)/2, c =rd(V1,V2), and b2 =c? - a%, and where the x-axis is oriented along the line segment

V12 with the origin at a point half-way between Vi and V2.

PROOF V-0.1: (See Figure 37.) By the definition of a homogeneous-behavior region, points in region 1 all
have the same path list, whose first element is V1. Thus the first leg of an optimal path from any point P in
region 1 is PV1. Similarly, the first leg from any point P in region 2 is PVa. The boundary between regions 1
and 2 is the set of points P such that ¢ + PVl = c2 + PVal. Therefore PVl - PV4l = ¢2 - ¢1. From basic
analytical geometry, the set of points with constant absolute difference of distances from two foci is a hyper-
bola. Since the above equation describes the signed difference of the two distances, it represents one branch
of the hyperbola, the branch such that [PV11 > PV:l. Thus the branch on which P lies is closer to V2 (the ver-

tex with the higher-cost optimal path) than to V. ¢

THEOREM V-0.2: (Boundary between a region with paths which go initially 1o a point, and a region with
paths which go to and travel along a linearly-traversed-edge, or “road”) Given goal point G and two adjacent
homogencous-behavior regions with cost-rate ro, one region having point U as root and the other having linear-
ly-traversed edge VW as root, where VW is a sub-segment of some terrain-feature edge such that OPL(V) =
[W 1 OPL(W)] and the cost-rate along the edge is rvw, (for example, a road seginent where paths leave the road

irom point W), the boundary between them 1s a portica of the curve
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(Equation 2) y*=4px,

where p is defined as follows. From W extend a ray WWq away from region 2 (i.e., no point on WW4 lies in
region 2) such that ZVWWa = /2 + \, and the distance between W and Wa is (cw - cu)/ro. Let point Ua be
the point such that line UU is parallel to WW4, and the line UsWa is perpendicular to line UUg. Let point O
be the pointon line UUq4 equidistant between U and Uq. Then the coordinate axes are the line UUg (x-axis with
Ulin the positive x direction) and the line through O parallel to UsWa (y-axis with W4 in negative y direction),
and p = (cw - cu)fro, where Y = sin'l(rvw/m) is the critical angle, cw = [(WG)*|, and cy = [([UG)*I (the costs
of optimal paths to goal point G from W and U respectively). Note that the x-axis is the parabola axis and the

line ﬁde is the directrix.

PROOF V-0.2: (See Figure 38.) The houndary between regions 1 and 2 is the set of points P such that the
cost of optimal paths which go through U and through W are the same. The optimal path through U begins
with the line scgmcnti’Tf and continues with (UG)* and has total cost cu, while the optimal path through W
starts with the line segment '1;6 at cost-rate ro, where Q is a point on VW between V and W inclusive, con-
tinues along line scgmcm'QWat cost-rate rvw, and ends with path (WG)* with total cost cw. Thus, the bound-
ary is described by the equation ro d(P,U) + cu = ro d(P,Q) + rvwd(Q,W) + cw, or rearranging terms, d(P,U) =
AP.Q) + siny d(Q,W) + (Cw - cu)fro . Now LPQW =TU/2 + V for a road, as shown by Rowe [Ref. 2]. Ex-
tenGing the line PQ to point P4, as Figure 38 shows, the right-hand side of the above equation is the straight-
line distance. from P to Pa. Let line D lie perpendicular to PQ, through Pa. By Figure 38, line D is a distance
(cw - cu)/ro from W. Thus, the above equation states that P is equidistant from point U and line D, the defini-
tion of a parabola with the form of Equation 2, where the coordinate axes are the lines UUg and D as shown,

and p is half the distance from U to Uy. ¢

THEOREM V-0.3:(Boundary between regions having paths which go to and travel along two different linear-
Iy-traversed edges, or "roads”) Given goal point G and two adjacent homogeneous-behavior regions with cost-
rate ro, one region having linearly-traversed edgeX_Y'as root and the other having linearly-traversed cdge—VW
as root, where XY and VW are sub-segments of terrain-feature edges such that OPL(X) = [Y i OPL(Y)),
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OPL(V) = [W | OPL(W)] and the cost-rates along the edges are rxy and rvw respectively, (for example, two
road segments where paths leave road XY from point Y or leave road VWat point W), the boundary between
them is a segment of line L defined as follows. Let Dxy be the line which forms angle Wxy with line XY, is
distance cy from point Y, and lies on the side of XY which does not include the region of which XY is the
root. Let Dvw be the line which forms angle vw with line VW, is distance cw from point W, anG sies on the
side of VW which does not include the region of which VW is the root. Let Po be the point of intersection of
Dsy and Dvw, and let 0t be the angle between line XY and line VW. Then the boundary lies on line L, which

is the line through point Po which lies at an angle (€ + Wvw <+ Yaxy)/2 with both Dxy and Dyw.

PROOF V-0.3:(See Figurc 39) Consider the set of points P with two optimal paths, OPL1 = [Q1, Y |OPL(Y)],
and OPLz = [Qz, W | OPL(W)), where Q1 and Q are the points at which the paths first enter edges XY and
VW respectively. The cost of OPL1 ie ro d(P,Q1) + sin(Yxyd(Q1,Y) + cy and the cost of OPL2 is ro d(P,Q2) +
sinyfvwd(Q2,W) + cw. By Figure 39, these are the perpendicular distances of P from two lines Dxy and Dvw,
defined as follows. Dxy is the line which forms angle Yxy with XY, is distance cy from point Y, and lies on
the opposite side of XY from the region of which XY is the root. Dy is the line which forms angle Yyw
with VW, is distance cw from point W, and lies on the opposite side of VW from the region of which VW is
the root. From analytic geometry, a set of points equidistant from two lines is a line, The point Po, where Dxy
and Dvw intersect, is distance zero from both lines, and so lies on line L which includes the boundary. By basic
plane geometry, the line eguidistant from two intersecting lines is the line which bisects the angle between
them. The angle between Dxy and Dvw is (O + Yxy + Yvw), so that line L forms angle (O + Wy + Yvw)2
with both Dxy ard Dyw, ¢

-~ THEOREM V-0.4: (Boundary between two regions having paths which cross two different edges.) Given
goal point G and two adjacent homogeneous-behavior regions with cost-rate ro, one region having Snell’s-

Law edge VW 2nd the other having Snell’s-Law edge XY, where paths which cross vw go directly to point

U al cost-rate I'vw, patis which cross XY go directiy 1o point Z at cost-rate ray, and where the totai cost irom

U to the goal is ¢y and from Z to the goal is ¢z, the boundary between them consists of points P such that the
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distance from P to edge VW is x2, the distance from VW to U is x1, the distance from point P to edge XY is

y2, and the distance from XYt0Zis y1, where the seven equations of Equation Set 4 are satisfied.

(Equation Set 4) di siny do sinf3
X] = ——m— =
cos01 cos03

docos(83 - B) dicos(O1 - Y)cos(B4 + 0)
cost? cosbicosts »
1 cos(B2 + C)cos(b4 + O)
costi2 cosds

sinQt ( dicos(01-7)_cos(B2 + OL)(
sinds*  cosbh costh2

dosinocos(@3-B)  dicos(B1 - ) cos (B4 + O)

xp = cost2 cosbls cost1 cos04
- (1 - (cos(B2 + (1) cos(04 + O) )
cosb2 cosbs
Boundary Condition: TywX1 + T0X2 = Ixyy1 + I0y2
Snell’s Law for edge VW: rvwsin®1 = rosinG2
Snell’s Law for edge XY: Txysin©3 = rosin®4

wheze do, d1, €, 3, and 7Y are constants as shown in Figure 40, x1, X2, y1, and y2 are distances, and 0; and 03

are the dependent and independent variables.

PROQF V-0,4; (See: Figure 40.) Given two adjacent regions with point P on their boundary, and given that
the optimal paths from region 1 cross edchW—obcying Sneli’s Law, and then go through point U en route to
the goal, and that optimal paths from region 2 cross cdgeﬁ obeying Snell’s Law, and then go through point
Z en rovie to the goal, with cosis as shown, the boundary condition is

@é4-1) TvwX] + I0X2 = fay¥/1 + 10y2.
The Snell’s-Law conditions across edges VW and XY are

@-2) rvwsind1 = rosin©2 and rxysin03 = rosins .
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Applying trigonometric identities to the triangles UQI and ZQI gives the following for x1 and y1.

do sinf3
cos 03 .

4-3) _disiny )
e @4 n =

‘The law of sines applied to AUQiI gives that

4-5) g = X sin.( -
sy

Substituting the expression for xi in equation 4-3 into 4-5 gives

4-6) d1cos(81-7)

d2 = cosHy

The law of sines applied to AZQzI gives

@7 _ Yyicos(83-P)
i B .

sin

Substituting for the expression fer 1 in Equation 4-4 into 4-7 gives

@é-8) B = docos(63 - B)
A

Appl;ring trigonometric identities io the right triangle whose hypotenuse is the line segmem-l;@ gives

@4-9) x209582 = d3sinc - y2cos(64+ @) .

Substiuting the cxpression for d3 in Equation 4-8 into Equation 4.9 gives

4-10) docos(5s - B)sinct cos(B4 + 07)
X2 s - 3
o563 cos 82 % cosBa
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Applying trigonometric identitics to the right triangle whose hypotenuse is the line segment ﬁ gives

(4-11) y2c0504 = d2sinCt - x2c08(02 + %) .

Substituting the expression for d2 in Equation 4-6 into Equation 4-11 gives

4-12) _ dicos(81 - Y)sino x cos(02 + O)
~ cosBj cos 4 ) cos04

Substituting the expression for y2 in Equation 4-12 into Equation 4-10 and simplifying gives

(4-13) do sinOicos(93 - ) dicos(01 - Y) cos (04 + C)
)= cosP2 cosbs~ ~ cosC) cosOs
X2 = (1 - (cos(92 + O1) cos(O4 + 1) )
cost)2 costs

Substituting the expression for x2 in Equation 4-13 into Equation 4-12 and simplifying gives

(4-14) docos(83- B) dicos(B1 - Y)cos(Bs + )
sinoc( dicos(01-7Y) cos(02 + Ot)( cosb: cosBicostly »
sinBs' cosB; ~  cosB2 ] cos(D2 + 0)cos(B4 + O1)
) cos02 cosBs.

Equations 4-1, 4-2, 4-3, 4.4, 4-13, and 4-14 are exactly Equation Set 4. 81 and 03 must be iteratively set and
the results of the first four equations checked in the boundary-condition equation, since there is no known

closed form for Equation Set 4. The angles 02 and 04 arc determined by the Snell’s Law relations. ¢
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THEOREM V-0.5:(Boundary between a region with paths which go to and travel along a linearly-traversed
edge("road”) andaregionwithpathswhich cross anedge) Given goal point G and two adjacenthomogencous-
behaviorregions with cost-rate ro, one region having linearly -traversed edge VW as root, an the other having
as root Snell’s-Law edge XY, where VW is a sub-segment of some termain-feature edge such that OPL(V) =
[WIOPL(W)] ang the cost-rate along the edge is rvw, (for example, 2 road segment where paths leave the road
from point W), an:g wiere paths which cross XY go dirccily to point Z at cost-rate rxy, and where the toial cost
from W to the geul is cw, and from Z to the goal is ¢z, The boundzry between the regions consists of points P

suca that the six equaiions of Equation Set 5 zre satisfied.

(EquationSetS) . _ d3 siE& e _cos(yi+ Or) sinyY_
Y1 = “osBy 2 =Xae0, cos%z + 02003

d2{cos(0: + Y)(rosin®. - rvwcosB2) + rosisy cos(CZ - 01))
sin(02-0-Y)reweostz: rocos(Y2 - ){sin(02-0L-\)+ro(costiz+cos(B2 - )

s3cosOa(rosinOicasP+ rxysinfeos(0z -00) + (cz - cw)cosBacos(W- o)
sin{B2-U-Y)rvwcost2+rocos(82 - )(sin(C2-CL-Y)+roicosba+cos(®2 - 1))

X2 =

(z’::?& ol o o;@;.(ﬂ.éc;;(;;\ll}b)a) - 1)) (d2cos(O2+Y)+dacosBeost)

M= cosBrHcosTE)
sin(02-0-\)

rewc0s02 + rocos{Bz-00)(

2
syucosfeos’8z o N
Y] + TysinBeusB2) + (cz - cw)zos02

[43
rvw0s92 + rocos(02 -0)( cgisn.;;%)?gf.%-m) -1

dorosinY+ d3(

Sncll’s Law condition for edge XY: fxy sinB1 = ro sin62

Snell’s Law condition for cdge VW: sinW= rew /10




PROOF V-0.5:(See Figure 41.) Given two adjacent regions with point P on their boundary, and given that
the optimal paths from region 1 go directly to edge VW and travel glong it to point W, and that optimal paths
from region 2 cross edge -ﬁobcying Sneit’s1.aw, and then go through point Z en route to the goal, with costs

as shown in Figure 41, the boundary condition ig

Ce¥2 + IxyYt + C2 = CrX2 + IvwXf+ Cw .
At the two edges, the Snell’s-Law conditions are

cvsin®2 = rxysinG;

and siny=ryw/cr .

The same type of trigcnometric and algebraic reasoning used in Proof V-0.4 leads to the equations iisted in
Equation Set 5. Since there is no closcd-form expression for the boundary, an approximation is computed using
a finite number of points. The procedure for plotting a point on the boundary is to set 91, usethe first Snell’s-

Law condition to solve for 02, and then solve for x1 and x2. ¢

THEOREM V-0.6: (Boundary between tvwo regions each having paths whick cross two edges) Given goal
point G and two adjacent homogeneous-behavior regions with cost-rate r¢, one region having Sneli’s-Law
cdchW and the other having Snell’s-Law edge -R—§, where paths which cross VW go from there at cost-rate
rvw directly to a Snell’s-Law crossing at cdgc-)'(_Y_, and tiien go at cost-rate rxy directly 1o point Zi; paths which
cross RS go from there at cost-rate rys directly to a Snell’s-Law crossing at edge TU, and then £0 at cost-ratc
nw flirectly 1o point Z2, and where total cost from Z) to the goal is ¢ and from Z2 to the goal is c2, the bound-
ary betvzzen them consists of points P such that the path distance from P te edge VW is y3, the path disiance
from VW to XY is y2, the path distznce from XY to point P is yi, the path distance from point P to edge RS
is x3, the path distance from KS to TU is xz, and the path distancs. from TU 10 Zz is x1, where the fourteen

cquations of Equation Sct 6 are satisficd.
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(Equation Sct 6) d7 sinP1 ds sinp1
Xl = ’ n = ’
cosUs cost)

_ sintta drcos(f32 - Os) _ sin0y dscos(gx-ex)
X2 = cosBs((14 il cosBs ), y2 = cosga(dl " 7T cosBy )

x3 = SnOs+Y) 4 ds cosr _ _drcos(Bz - Bg)cosds )
~ " cos(Os+ o4 + Y1) sinbs cosbls !
_ sinY _ dicosB2_ _ dscos(B1 - B1)cos2
Y3 = Cos(Pa- 1) (d cosBs T cosBy )
gy . cos07 + dscos(B2 - Bg)cosO4
cos(64 - y1) 8 sinDg cosJs
cos(@s+0u+7Y1) 4 d4 cost7 d7cos(pP2 - Ys)cos7
3 - - +
sinOs costs
Boundary Condition; T0Y3 + Tvwy2 + IxyY1 = I0X3 + IgsX2 + IwX1
Snell’s Law: rvwsing2 = rxysin6) 10sinB4 = rywsin®3
Irs5in67 = rusinOsg 105in0s = rrssinBs
Trigonometric Identities: G3=0-02 0= 03-07

PROOF V-0.6: (Sce Figure 42.) Given two adjacent regions with point P ¢n their boundary, and given that
the optimal paths from region 1 cross edge VW obeying Sneli’s Law, then go straight to edgei(? and cross
it obeying Sncll’s Law, and then go through point Z; en route to the goal, and that optimal paths from region
2 cross cdgcﬁ§ obeying Snell’s Law, then go straight to cdgc'T_U' and cross it obeying Snell’s Law, and then

go through point Z2 cn route to the eoal, with costs as shown in Figure 42, the boundary condition is

10y3 + Ivwy2 + Ixyyl = I0X3 + IrsX2 + MwX1.
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Figure 42
Boundary Between Homogeneous-Behavior Regions each with Two

Snell’s-Law Edges as Roots
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At cach edge, the Snell’s-Law conditions are
TvwsinO2 = 1xysin0i

rosin©4 = rvwsinO3
Irssin07 = rusinds

105in05 = rr5sinQs .
Trigonometric identities applied to AV1PjP2 and AV2P3Ps give the relations
03=0-62 and

B6=03-07 .

Avpplying to the diagram of Figure 42 the same type of trigonometric and algebraic reasoning used in Proof
V-0.4 leads to the equations listed in Equation Set 6. By solving for 01 and 93, a point P on the boundary can
he found. Since there is no closed-form expression for the boundary, an approximation is used where a finite
number of points are plotted. Since there is no closed-form expression for O as a function of 03, the proce-
dure for plotting a point on the boundary is to set 01, iteratively search for a value of O for which the equa-
tions of Equation Set 6 are satisfied (within some allowable error), and then trace the Snell’s-Law path accord-
ing to the heading for 81 using the values for y1, y2, and y3, or according to the heading for 83 using the
values for x1, x2, and x3. Note also that the expression for °y; is not in closed form, and so must be found by

itcrative means. ¢
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E. PROOFS OR BOUNDARIES ASSOCIATED WITH PRIMITIVE TERRAIN-FEATURE

TYPES

LEMMA V-1.1: If there are feasible paths from a vertex of a polygonal obstacle, then the obstacle edges con-

stitute boundaries between homogencous-behavior regions.
PROOF V-1.1: Trivially true. ¢

LEMMA V-1.2: Each vertex V of an obstacle hidden edge generates a linear shadow boundary which is the
ray lying on the line defined by V and the first point P on OPL(V), starting at V and lying in the opposite direc-

tion from P.

PROOF V-1.2: Note that if V joins a hidden edge and a visible edge, point P will rot be on the obstacle
perimeter by the definition of a visible edge; if V joins two hidden edges, P will be the other vertex of one of
the hidden edges. We prove first that there is a single shadow boundary associated with each hidden-edge ver-
tex, second that no vertices other than hidden-edge vertices generate shadow boundaries, and third, that the
shadow boundary is aray defined as stated in Lemma V-1.2,

First, consider point Q near V, a hidden-edge vertex. Let P be the first point on OPL(V). Then one of
three cases holds (sce Figure 43): either (a) Qa is in the obstacle interior, or (b) Qb and P are intervisible, or
(©) Qc and P arc not intervisible. Clearly, if V joins a hidden and a visible edge, Figure 43a applies, and if V
joins two hidden edges, Figurc 43b applics. Qa is ;cpamted from Qo and Qc, not by shadow boundarics, but
by obstacle-edge boundarics. The optimal path from Qb is (QuG)* = ((QuP)* (PG)*), where (QuP)* is the line
segment PQp. Thus the optimal-path list from Qb is OPL(Qv) = [P | OPL(P)]. The optimal path from Qc is
OPL(QG)* = ((Q:V)*(VP)*(PG)*), where (QcV)* and (VP)* arc the line segments VQ. and VP respective-
ly. Thus the optimal-path list from Qc is OPL(Qc) = [V, P | OPL(P)]. Thus OPL(Qp) #OPL(Qy), so Qb and

Qc are in different regions, so there is a boundary between them,

We show sccondly that no other vertices generz te shadow boundaries. Assume vertex V does not join a

hidden and a visible cdge, or two Iudden edges. Then it joins two visible edges. Thus, OPL(V) does not in-
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clude any vertices of the obstacle, from the definition of a visible edge. By Assumption I-3, V is not on a non-
trivial {i.c., non-obstacle-edge) boundary. Consider a point Q arbitrarily close to V. Clearly, Q is either in the
obstacle interior (call it QJ) or in its exterior (including its edges) (call it Q). Clearly, Qa is separated from Qb
by an obstacle-edge boundary. Now in the absence of externally-generated boundaries in the vicinity of Vi,
Qb can be made close enough to V that it is in the same region as V, and so OPL(V) = OPL(Qu). Thus in the

vicinity of V, there is only one exterior region, and so V does not generate any shadow boundaries.

Thirdly, we show that each shadow boundary is a ray lying on the line defined by vertex V and P, the first
point on OPL(V), starting at V and lying away from P. Consider a point R on ray B in Figure 43a or 43b. By
convention, let points on B not be intervisible with P, Then RP)* = (EV VP). Now consider R” arbitrarily
close to R but intervisible with P. By the definition of intervisibility, (R'P)* is a straight-line segment. Since
R’ is arbitrarily close to P, (R’P)* must be arbitrarily close o (RV VP) , and so (RV VP) must be a straight-
line segment, collincar with P, V, and R. Since B scparates the region with OPL = [V, P | OPL(P)] from the

region with OPL = [P | OPL(P)], B must begin at V and lie away from P. ¢

LEMMA V-1.3: A convex polygonal obstacle has exactly one opposite edge.

PROOF V-1.3:First, we show that obstacle O with n distinct vertices has at least one opposite edge. Assume
O in Figure 44a has no opposite edge. Then for any hidden cdge ViVie1, either OPL(V;) COPL(Vi+1), or
OPL(Vi+1) © OPL(V)), or clse ViVi+: would be an opposite edge. Now consider veriex V1, a veriex joining
a hidden and a visible edge. By the definition of visible edges, VVk € O, Vk ¢ OPL(V1). Therefore, it
must be that OPL(V2) & OPL(V1). Since V1V2 is not an opposite edge, OPL(V1) € OPL(V2). Then by in-
duction on i, similar reasoning shows that Vi, OPL(V,) COPL(Vy+1). Fori=n, similar reasoning shows that
OPL(Vn) COPL(V1). But this statement contradicts that VVi € O, Vi g OPL(V1). Therefore by con-

tradiction, obstacle O has at least onc opposite edge.

Now assume that there are n distinct opposite edges, where n22. Choose any two opposite edges, say

ViVis1and V,V).1, and without loss of generality assume that j 2i+1 as shown in Figure 44b. Since V,Vis1
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Uniqueness of Obstacle Opposite Edge
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is an opposite edge, Vi € OPL(Vi+1). Therefore OPL(Vis1) € OPL(Vj) and OPL(Vi+1) C OPL(Vj+1). By
similar reasoning with respect to edge V;Vj+1, OPL(Vj+1) C OPL(Vy) and OPL(Vj1) COPL(Vi+1). But

this is a contradiction, so therz must be no more than one opposite edge.

Therefore a convex polygonal obstacle has exactly one opposite edge. ¢

LEMMA V-1.4: An opposite-edge boundary emanates from each obstacle opposite edge and consists of seg-
ments of hyperbolas such that an initial hyperbola segment starts at the opposite point and is defined by con-
sidering the vertices V1 and V2 of the opposite edge as its foci, with hyperbolic constant being the absolute
value of the difference of the costs of (V1G)* and (V2G)*, as specified in Equation 1. If at any point a shadow
boundary intersects the opposite-edge boundary, it will continue along a new hyperbola segment defined by
considering as foci, first, the vertex of the edge which generated the shadow boundary and which is closer to
the goal of the two vertices of that edge, and second, the focus of the previous hyperbola which is not also a

vertex of the edge which generated the shadow.

PROOF V-1.4: Given a convex polygonal obstacle O with opposite edge V1V2, and given point X on V1V2
such that I(XG)1* and (XG)2*, (XG)1* # (XG)2*,i.e., X isthe opposile point. Since V1V2 is a hidden edge,
then it must be that OPL1(X) = [V1 ! OPL(V1)] and OPLA(X) = [V2 | OPL(V2)] (see Figure 45a). Consider
peint P arbitrarily close to X in the obstacle exterior. By Theorem I-2, (PV1)* = PVl and (PV2)* = IPVal, be-
cause no other terrain features intervene, so P is in both the homogeneous-behavior region with Vi as root and

the region with V2 as reot. By Theorem V-0.1, the set of points P is described by Equation 1.

Let By be the set of points over which P obeys the Equation 1. As ? moves away fiom X, it lies on By
only as long as PV & (PG)1* and PV2 C (PG)2¥, i.c., as fang 55 the linc segment from P 1 both versces am
par; of the respective optiral paths from P in the two dwections. If at some point Z i becomes truc that PV,
Z (PG)", for i=1 or i=2, then at that poini By must have intersected shadow boundary i (see Figure 45b),
Now the same reasoning as above applics io the point Vi, whers GPL{Vi) = [ Vi | QPL(V%)], and so ancther
hyperbola branch B2 becomes she adjoining portion of the opposite-edge houndary. Since posst Z lay on buth

hyperbola branches Bj and Bz , it must be that By and B2 imersect at point Z. The samie reasening continues




Figure 45
Obstacle Qpposite~Edge Boundary
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to apply as long as Bjintersects any shadow boundary of obstacle O, Therefore the opposite-edge boundary
is a connected sequence of hyperbola segments starting at the opposite point, and for each segment consisting
of a portion of the hyperbola branch with the two visible obstacle vertices as foci and the hyperbolic constant

being c2-c1, wherecz>c). @

THEOREM YV-1: A convex polygonal obstacle in homogeneous background terrain with specified goal-point
will generate as boundarics the obstacle edges, shadow boundaries from each vertex of a hidden edge as
specified in Lemma V-1.2, and a single opposite-edge boundary consisting of piecewise hyperbolic segments

as specified in Lemma V-14.
PROOF V-1: Theorem V-1 follows directly from Lemma V-1.1, Lemmu V-1.2, and Lemma V-14.
LEMMA V-2.1: A river segment, or river-edge, constitutes a boundary between regions.

PROOF V-2.1: (See Figure 46a.) Given river segment V1V2, and point X1 arbitrarily close to V1V2 having
optimal-path list OPL(X1) = [W | OPL(W)) where W € V1V2,i.e., X1’ soptimal path does not cross theriver,
and point X2 arbitrarily close to V1V2 on the opposite side V1V2 . Now X2 may have one of three possible op-
timal-path lists: OPLa (X2 ) = [V11 OPL(V1)] i.e., it goes around end 1 of the river, or OPLy(X2) = [V2 |
OPL(V2)}, i.c., it goes around end 2 of the river, or OPL(X?2) = [[V1V2] | OPL(W)] where [V1V2] specifies
that the path crosses the river without changing direction, and W is the next point on the optimal-path list.
Since in all three cases, the optimal-path list of X2 is different from that of Xy , therefore X1 and X2 arc in

different regions. Therefore the river edge conslitutes a boundary. ¢
LEMM;A V-2.2: Eachriver vertex V with OPL(V) = [W | OPL(W)] which is an endpoint of a river secgment

ot joining any others will gencrate a shadow boundary which is a ray lying on the line VW, starting at V and

jying awsy from W.
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River Segment Boundaries
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PROOF V-2.2: Given the same situation as in Proof V-2.1, analyze OPL, (X2 ) = (V1 | OPL(V1)] and
OPLu(X2) =[V21OPL(V2)], with respect ta vertices V1 and V2 it the same manner as in Proof V-1.2 to show
that there are rays emanating from V1 and V2 lying away from the goal which act as boundaries between op-
timal paths which go around the vertices and those which bypass them. Note that, assuming a positive river-
crossfng cost, location ¢ for X2 will never be such that X2 , Vj, anc the next point in OPL(V;) are collinear,
because if so, it will be less costly for the optimal path 10 avoid crossing the river and go around vertex Vi in-

stead. ¢

LEMMA V-2.3: A river segment with vertex V with OPL(V) = [W | OPL(W)] not adisining any other river
segment may have a river-crossing boundary which is a scgment of one branch of a hyperbola constructed by
considering as foci the points V and W, with hyperbolic constant ¢ = IVWI - ¢r, where ¢ is the fixed river-
crossing cost. This boundary will exist if the branch closer to V intersects the river segment. The boundary
consists of the portion of the hyperbola branch between the intersection of the branch with the river, and the

first point of intersection of the branch with another river boundary.

PROOF V-2.3: Consider point P which lies in the shadow of river segment with vertex V as in Figure 46b,
where rg is the cost rate for travel in the background region. As in Figure 46a, there are only three possible
~**ys (e opti:nal path from P can go initially. If P lies on a boundary between paths which cross the river
7w 4. the fixed crossing cost, and paths which go through V, the first region has V as its root and the second
region has the river segment as its root. Optimal paths crossing river segrents do not change headings. There-
fore, the path from P to W has cost cpw = ro d(P,W) + cr. The cost of the path from P to V has cost cpv=ro
d(P,V), as usual with a point root, and the cost cw from W is known. But this is just as if paths in region 2 had
W as a root, where the cost from W to G was cw + ¢r. Thus, the boundary scparates two regions whose roots
are points, so by Theorem V-0.1, the boundary is a hyperbola segment described by Equation 1. If ¢y and the

oricntation of VW are such that the boundary does not intersect the river segment between V and U, it must




be that for all points in the shadow of the river segment, it is more costly to cross the river than to go around

viaV. ¢

LEMMA V-2.4: A river segment with vertices V1 and V2 has an opposite-edz# hourdary which lies on the
hyperbola formed by considering each vertex as a focus conforming to Equation 1, and lies on the Lranch of

the hyperbola which is closer to the vertex with higher-crs, optimal path,

PROOF V-2.4: Consider point Q in Figure 46b. This poini is on the boundary which separates region 1 from
region 3. Optimal path from Q through region 1 goes through V, while the optimal path through region 2 goes

through U. Thus, the bourdary separaies regions whose roots are both points, so Theorem V-0.1 applies. ¢

THEOREM V.2: An isolated river segment has a river-edge boundary, two shadow boundaries formed as
specified in Lemma V-2.2, an oppocsite-edge boundary formed as specified in Lemma V-2 4, and either two,

or no, river-crossing boundaries as specified in Lemma V-2.3,

PROOF V-2: Consider points X1, X2, Vi and V2 as in Proof V-2.1-and Figure 46a, with optimal-gath lists
OPL(X1), OPL(Xa), OPL(Xv), and OPL(X,) ac described in Proof V-2:1, Clearly, these four optimal-path lists
are the only ones possible for points arbitrarily close to an isolated river segment, so by the definition of a
homogencous-behavior region, there are no more than four regions associated with a river seginent. Thus the
only boundarics possible adjacent tc an isolated river segment are those betwezn pairs of these four regiorns,

plus a fifth, the 1egion unaffected by the river. The form of each boundary follows directly from Lemmas V-

2.1,V-22,V-23,and V-24. ¢

LEMDMA V-3.1: A road-edge forms a boundary betwzen homogencous- behavior regions,

PROOF V-3.1: Trivially truc. ¢
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LEMMA V.3.2:Given road segment with goal G, one vertex V, and the other vertex’s location unspecificd,
and cost-rate rr, with cost-rate in the background ro. If the characteristic wedge VAGB as defined in Chapter
V lies "inside" road- vertex V, two road-end/road-travelling boundaries will be formed as rays with vertex at

V, each lying so that its angle with the road is /2 + .

PROOF V-3.2:Consider the road segment of Figure 47a, with goal G, one vertex V, and the other vertex’s
location unspecified, and cost-rate rr, with cost-rate in the background ro. As shown in [Ref, 2], paths will enter
leave aroad interior only at the critical angle f = sin'l(rr/ro). Thus a path leaving the road to point G will do
soat point A. If GA does not intersect the road at or to the "left” (in the figure) of V, no paths will travel along
the road from the direction of V. Otherwise, VAGB issaid tolie "outside” V, and paths travel along the road
from V. Consider points Pj and P2 in the vicinity of P. If P is arbitrarily close to V, the path from P; will enter
the road at angle Y en route to A, while the path from P2 will enter the road at V. Thus, the set of boundary
points P lies on ray VP such that ZPVA = 7/2 + . The same reasoning with respect to point Q gives that
ray VQ also is a boundary. ¢

LEMMA V-3.3:Given road segment with goal G, one vertex V, and the other vertex’s location unspecified,
and cost-rate ry, with cost-rate in the background ro. If the characteristic wedge VAGB lies "inside” road-
vertex V, a road-end!/goal boundary will exist on the V end of the road segment, forming a segment of a hy-

perbola with V and G as foci and obeying Equation 1.

PROOF V-3.3:Consider point P ir. Figure 47b, with OPL1(P) = {V, A, G], and OPL2(P) = [G]. Since the two
regions through which the optimal paths from P lic have points as roots, Equation 1 applics, and the bound-
ary is a hyperbola segment with V and G as foci. The boundary will begin at the noint at which the hyperbola

intersects ihe rcad- end/road-travelling boundary of Lemma V-3.2. ¢

LEMMA V-3.4:Given road segment with goal G, vertices Vi-and V2, and cost-rate rr, with cost-rate in the
background ro. If the characteristic wedge VAGB lics "inside” road-vertex Vi, a near-side-road-travell-

ing’goal wil cxist on the near side of the river which forn: a parabola with focus G and directrix as specificd

188




Figure 47
Road Segment Boundaries
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in Equation 2. The boundary will begin at the point of intersection of the parabola with the road segment,

which will be st V2 if VAGB lies "outside" V2, and will be at A otherwise.

PROOF V-3.4:From Figure 47c, the paths from P go to the road and trave] along it, or go to une goal, Thus,
the boundary is between regions with point root and soad root, so Equation 2 applies. Since paths leave the
road at W in Figure 37, point V2 will correspond to point W if the wedge is "outside” V2, or point A will cor-

respond to point W otherwisc. 4

LEMMA V-3.5:Given road segment and goal G. If VAGB is "inside” road vertex V, arcad-travellingiroad-
crossing boundary will be formed on the far side of the river which is a ray with vertex at point A and col-

linear with GA lying away from G.

PROOF: V-3.5:If VAGB is "inside” V, Figure 47d will apply. Paths from points P just to the "left" of P in
the figure will cross the road directly to G, while the path from P-and P2 enter the road and travel along it to

A, where they exit 10 G. ¢

LEMMA V-3.6:Given a road segment with vertex V and goal G, with road cost-rate rr and background cost-
rate 1o. A far-side-road-travelling/goal boundary will exist if Vis outside V. The boundary will be a parabola

which begins at V and lies away from the goal.

PROOF V-3.6:From Figure 471, the paths from. P go to the road and travel along it, or go to the goal. Thus,
the boundary is between regions with point root and road root, so Equation 2 applies. Since the point W in

Figure 37 is the point at which paths leave the road, V will correspond to point W. ¢

LEMMA V-3.7:1f VAGB "straddles" V, a road shadow boundary will exist as a ray from V, collincar with

GA, and lying away from G.
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PROOF V.3.7:From Figurc 47g, a path from Py will cross the road, while a path from P2 will bypass it. This
will occur only if VAGB "straddles” V, because otherwise paths from P2 will enter the road and travel along

ittoA. ¢

THEOREM V-3:Given a road segment V1V2 with cost-rate rr, a goal G, and a background cost-rate ro; if
characteristic wedge VAGB is "inside” Vi, one road-end/road-travelling, two road-end, one near-side-road-
travelling/goal, and one road- travelling/road-crossing boundaries exist on the Vi end of the road segment;
when VAGB "straddles” V;, a road shadow boundary exists on the V; end; when VAGB is "outside” Vi, one
near-side-road-travelling/goal and one far-side-road-travelling/goal boundaries exist on the Vi end; and the
road segment is always a boundary. The form of these boundaries is as described in Lemmas V-3.1 through
V-3.7.

PROOF V.3:Follows directly from Lemmas V-3.1 through V-3.7.¢

LEMMA V-4.1:Given high-cost, exterior-goal HCA withtwo visible edges V1V2and V3Vy, if the tworzgions
whose paths cross the two edges are adjacent, the visible-edge boundary between them is described by Equa-

tion Set 4.

PROOF V-4,1:PerFigure 48a, the edges V1V2and VaVsareroots of region 1 and region 2 respectively. Paths.
which cross them go directly to G, and so the description of Theorem V-0.4 applies to this situation, and Equa-

tion Set 4 describes the boundary. ¢

LEMMA V-4.2:Given high-cost, exterior-goal HCA with a visible edge V1V2 and a hidden edge V3V, if the
region whose paths cross edge ViV2 and the region whese paths go to and-travel along edge V3Vy are ad-

jacent, the visible-hidden-edge boundary between them is described by Equation Set 5.

PROOF V-4.2:PcrFigure48a, the edges ViV and VsVsareroots of region 1 and region 3 respectively, Paths

which cross cdge ViV2 obey Snell’s Law, and then go directly to G, while those which travel along cdge VsVe
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Figure 48
High-Cost Exterior-Goal HCA Boundaries
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lcave the edge at point Vs en route to the goal and so the description of Theorem V-0.5 applies to this situa-

tion, and Equation Set 5 describes the boundary, ¢

LEMMA V.4.3:Given high-cost, exterior-goal HCA with two hidden edges V4Vs and- VsV7, such that
OPL(Ps) = [Vs, Va1 OPL(P4)}, if the two regions whose paths enter and travel along the two edges are ad-

jacent, the hidden-edge-mer ging-path houndary betwecn them is described by Equation Set 3. ¢

PROOF V-4.3:PerFigure 48¢, the edges V4Vsand VeV7arercots of region 4 and region S respectively. Paths
which enter edge V4Vs at the critical angle travel along it and leave at V4 en route to the goal, while those
which travel along edge VeV7 leave the edge at point Ve, eventually merging with paths from region4. So the
two edges are linearly- traversed edges and are the roots of regions 4 and 5, so the description of Theorem V-

0.3 applies to this situation, and the boundary is a line segment as described therein. ¢

LEMMA V-4.4:Given high-cost, exterior-goal HCA with two hidden edges V4Vs and VgV7, such that
OPL(Ps) = [Vs, Va | OPL(P4)), if the two regions whose paths enter and travel along the two edges are ad-
jacent, the hidden-edge-diverging-path boundary between them is a line segment described by Theorem V-
0.3.

PROGF V-4.4:Per Figure 48¢, the edges V4Vsand V7V arceroots of region 4 and region 6 respectively. Paths
which enter edge V4Vs at the critical angle travel along it and leave at V4 en route to the goal, while those
which travel along edge V7Vs leave the edge at point Vs (going in the other direction asound the exterior of
the HCA). So the two cdges are lincarly- traversed edges and are the roots of regions 4 and 6, so the bound-

ary between them is a line segment as described in Theorem V-0.3. ¢

LEMMA V.4,5:Given a high-cost HCA with exterior goal G and vertices Vi. There is a boundary associated
with cach V; such that optimal paths in onc region cross edge Vi.1Vi and optimal paths in the other region
cross edge ViViz1, except in the case that shorcutting occurs along the entire edge ViVi+1 to edge Vi1V, in

which case no boundary occurs for veriex V.




PROOF V-4.6:There are three cases: both edges are visible, one edge is visible and the other is hidden, or
both edges are hidden. When both edges are visible, by definition optimal paths from neither vertex includes
points along an edge of the HCA. Consider Figure 30, and points near V2 in the HCA interior. Since the inte-
rior-has higher cost-rate than the exterior, there is no incentive for paths from points close to the visible edge
to move further away frem it. Rather, such paths will cross the edge as soon as possible to use the lower-rate
exterior, Thus there are some points in the interior close to Vi whose paths cross edge Vi.1Vi and some whose
paths cross edge ViVi+1. There is, therefore, a boundary between them which begins at V;j and lies in the HCA
interior.

In the second case, by the same reasoning as above, some paths whose start points are close to V; will
cross visible edge Vi-1Vi. But some points close to Vi may be far enough from edge Vi.1Vi that it will be less
costly to move initially away from the goal to edge ViVi+1in order to travel at the less expensive exterior rate,
Clearly, this will cause a boundary which begins at Vi. If, however, edge ViVis1 forms an acute enough angle
with Vi.1Vj that there are no points near Vi for which it will be less costly to move away from the goal. In this
situation, shortcutting will occur, at lcast in the vicinity of Vi, If some paths travel along edge ViVi.+1, the point
at which they shortcut into the interior will be the beginning of the boundary associated with Vi, because points
just inside ViVi+1 and toward Vis1 from the shortcutting point will have less costly paths by moving away
from the goal to the lower-rate edge, while points just inside but toward V; from the shortcutting point will go
directly across the HCA. If shortcutting occurs all along edge ViVi+1, however, there will be no boundary as-
sociated with Vi, because all paths have the same behavior. In the third.casc, by the same reasoning as above,
a vertex joining two hidden edges will have an associated boundary unless shortcutting occurs all along the

cdge. ¢

LEMMA V-4.7: The edges of a high-cost HCA with exterior goal are homogencous-behavior boundarics.,

PFROOF V-4.7:Trivially truc. ¢
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LEMMA V.4.8:Given a high-cost HCA with exterior goal G, each veriex V of a hidden edge generates a
linear shadow boundary which is the ray lying on the line defined by V and the first point P on OPL(V), start-

ing at V and lying in the opposite dircction from P,

PROOF V-4.8: The proof is the same as for Lemma V-1.2. (See Figures 23, 24, and 25.) ¢

LEMMA V-4.9:Given a high-cost HCA with exterior goal G with n interior boundary trees. There exists an
opposite-edge boundary associated with each trec which begins at the point at which an interior boundary of
the tree not associated with a vertex (i.e., nct one of the leaf ncdes of the tree, see Figures 30, 31, and 32) in-
tersects an edge of the HCA. There is also an opposite-edge boundary which begins at each point at which two
other opposite- edge. or a shadow and an opposite-edge boundary intersect. An opposite-edge boundary is
described by Equation 1 if the interior boundary at which it begins separates regions of two linearly-traversed
cdges, or by Equation Sct 6 if the interior boundary at which it begins separates regions whose paths cross two
edges en route to the goal. If it begins at the intersection of two other exterior boundaries, it wili be described
by Equation 1 if the two regions which the intersecting boundaries do not have in common have point roots,
and by Equation Set 6 (or a degenerate version) if one of the regions which the intersecting boundaries do not

have in common has paths which cross two edges en route o the goal.

PROOF V-4.9: At the point at which an interior-boundary tree in.2rsects a hidden edge of the HCA other than
a vertex, one of four situations must exist, An optimal path-from the point of interszction may go across the
HCA interior and a sccond optimal path from the same point travels along the hidden edge, for example, in
Figure 30 where two of the boundaries labehied "b" intersect edge V4Vs, Secondly, one path from the point of
intersection may cross a visible edge and a second path cross another edge, as in the boundary labelled "a” in
Figure 30. Third, two paths may go from the point of intersection in oppesite directions along the edge, as in
the boundary labelled "d" in Figure 31, where one path goes through V4 and one path goes through-V3. Fourth-
ly, there may be only onc optimai path from the point of intersection, as in the boundary in Figure 31.that in-

tersects edge VaVs,
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By examining Figures 30 and 31, it can be seen that when there are two optimal paths from the point of
intersection of the interior boundary, there are points in the HCA exterior which also go in two directions,
forming a boundary. in the fourth case above, where there is only one optimal path from the point of intersec-
tion, it can be seen that there is no extcrior boundary. But the interior boundary in this case is associated with
a verte x, In the first case, the exterior boundary separates a region whose points go 1o the vertex of the hid-
den edge through which goes the path from the intersection point, from the region whose paths cross two edges
en route to the goal. This is a degenerate case of Theorem V-0.6, where one path crosses two edges and the
other path goes through a point instead of crossing two edges, so Equation Set 6 applies. In the second case,
the exterior boundary separatcs a region whose paths cross two edges from a region *whose paths cross two
other edges, so Equation Sct 6 applics. In the third case, the exterior boundary separates two regions whosc

paths go through points, as in Theorem V-0.1 and Equation 1.

When any two exterior boundaries intersect, it must be that a third opposite-edge boundary begins, be-
czuse past the point of intersection there must be a discrimination between the two regions which the first two
boundaries did not have in common. The third boundary has as its region roots ¢ither two points, a point for
onc root and two edges for the other, or two different edges for both roots, because these arc the only types of
roots which the original exterior opposite-edge boundaries had. These roots are described by Equation 1 or
Equation Set 6, where a degenerate case of Equation Set 6 is the case that one of the pair of edges is replaced

by a vertex. Figures 30 and 31 show examples of exterior boundaries intersecting. ¢

LEMMA V-4.10:Giver high-cost HCA with exterior-goal G, and vertex V joining a visible and a hidden cdge
across which shortcutting occurs. There is a corner-cuiting boundary which begins at point V and obeys the
degenerate fosm of Equation Sct 6 where paths on one side of the boundary cross two edges, while paths on

the other side go through a vertex.

PROOQF V-4.10:(Sce Figure 31.) Points » 1 the shadow boundary emanating from V2 in Figure 31 (labelled

. .
or has g higher cost-rate than the exterior, there are come

points just below the shadow boundary which will travel 10 Va rather than go through the HCA. But points
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further below the shadow boundary will have further to go to vertex V2 and so will cross the HCA, paying the
higher cost-rate to do so. One set of points lies in a region with V2 as root, while the other set of points lies in
a region with edge V2V3 as root. Paths in the second region cross two edges ¢n route to the goal. This con-

forms to the d=generate form of Equation Set 6, 4

THEOREM V-4:A high-cost HCA with exterior goal has boundaries according to Lemmas V4.1 through
V-4.10.

PROOF V-4:Follows directiy from Lemmas V-4.1 through V-4.10.¢

LEMMA V-5.1:Given high-cost HCA with interior goal G. If the optimal path from a vertex Vi travels ini-
tially along an edge of the HCA, there is a hidden-edge boundary which begins at Vj and is a line segment

conforming to Theorem V-().3,

PROOF V-5.1:(See Figure 33.) Assume t:at for a veriex of high-cost interior-goal HCA Vi, OPL(V;) = [X,
Gj, where X is apoini on HCA edge V;iVi.1, for example V3 in Figure 33, Then there will be some points close
10 Viin the HCA intcrior which will exit and travel along edge ViVi.1 to X. Similarly, there will be some points
close to Vi on edge Vi+1Vi whose paths go through Vi, and so there will be points close to Vj in the HCA in-
terior which exit the HCA and travei along edge Vis1Vi to Vi. Thus there are two regions in the vicinity of Vi,
ard the boundary between them scparates paths which enter a lincarly-traversed edge and travel along it from
those which enter another lincarly-traversed cdge and travel along it. This is the situation of ‘theorem V-0.3,

so the boundary is a line segment as described therein, ¢

LEMMA V-5.2:Given high-cost HCA with interior goal G. If the optimal path from a vertex Vi travels ini-
tially along an edge of the HCA, there is a hidden-edge/goal boundary which is a parabola as specified in
Equation 2 which separates points which go to and travel along edge ViVi+1 from points which go to and travel

along edge ViVi.i.
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PROOF V-5.2:(See Figure 33, boundaries labelled "b".) By the same reascning as Lemma V-5.1, there arc
points close to vertex Vi which exit the region and travel along cdge Vis1V; to Vi. Consider peint P which is
moved away from Viinto the interior along the hidden-edge boundary associated with V;. At some point, paths
from P which go 1o edge V;Vis1 will cost no less ihan a path from P straight to the goal at the higher cos: rate.
At this point, a new boundary begins separating points which go to edge ViVis1and travel along it to Vi, from
points whichi go to G- This is the same situation as described in Theorem V-0.2, witk Equation 2 describing

the parabolic teundary. ¢

LEMMA V-53:Given high-cost HCA with interior goal G. If the optimal path from a vertex V; travels ini-
tially along edge ViVi.; of the HCA and cuts into the HCA at some point along edge V;iVi.1, there is a visible-
edgel/goal boundary which is a parabola as specified in Equation 2 and separates points which travel along the

visible edge ViVi.1 from those which go directly to whe geal.

PROOF V-5.3:By the same reasoning as Lemma V-5.2, whcn point P is far enough from Vi that paths which
£0 to edge V;V:.1 costno less than a path that gocs direcidy 10 G at the higher cost rate, a boundary will begin
scparating points which go to the lincarly-traversed edge from those which go to the point G. This is the same

situation as described in Theorem V-0.2, with paraboia as described in Equation 2. ¢

LEMMA V-5.4:Given high-cost HCA with interior goal G, and two adjacent vertices Vi and Vi1 whick have
optimal paths lying on HCA ¢dges, neither of which is edge ViVis1. Then there will be an interior-opposite-

edgeboundary whichis alinc scgment beginning on edge ViVis: and conforming to the description of Theorem

v-0.3.

PROQF V-5.4:1f the optimal path from V; lies initially ori edge V;Vi.1, and the optimal path from Vis1 lics
initially on edge V,V,.1, as must be by assumption, there will be points in the interior of the HCA as described
in Theorem V-0.3 which have paths which go to edge V,Vi+1 and travel along it 1o V;, and similarly there will
be yoints ir the interior which have paths which go to edge V,Vi«1 and trave! along it 1o Vi+1. Where thess

two regions meet, the boundary will separate points w hose. paths go to one lincwdy -traversed edge from points




whose paths go to another lingarly- traversed edge, the situation described in Theorem V-0.3. Therefore, the

boundary will be a line segment as described in Theorem V-0.3. ¢
LEMMA V-5.5:Each edge of a high-cost HCA with interior goal will be a Aca-edge boundary.
PROOF V-5.5;Trivially true, ¢

LEMMA V-5.6:Given high-cost HCA with interior goal G. If the optimal path frcm a vertex Vi travels ini-
tially along an edge of the HCA with OPL(V;) = [X | OPL(X)], there is a shadow boundary which is a ray with

vertex Vi and collinear with line ViX, which lies away from X.
PROOF V-5.6:The proof proceeds as in Proof V-1.2.¢

LEMMA V-5.7:Given a high-cost HCA with interior goal G, and opposite edge ViVi;1 as defined in L:mma

V-5.4. Then an exterior oppositz-edge boundary exists which conforms to Equation 1.

PROOF V-5.7:At the point at which-the interior-opposite-edge boundary intersects edge ViVis1, there are
two optimal paths which go through vertices V; and Vi+1. Points will exist in the extuiér. but close tz this in-
tersection: point, which will hiave optimal paths which go through these vertices as well. These points are on a
boundary which separates points whose paths go through Vi from those which go through Vis1, two regions

with point roots. Therefore, Theorem V-C.1 applics, and the boundary is a hyperbola segment which conforms

to Equation 1.4
LEMMaA V-5.8: Given high-cost HCA with interior goal G, and vertex Vi which has optinial path which goes
directly to G. There will be a visible-edge boundary in the HCA exterior beginning at Vi which conforms to

Equation Sct 4.

PROOF V-5.8:Consider points close to V; outside the HCA. Since the best path from Vi is straight to the goal,

clearly patns from points in the lower-cost exterior will have optimal paths-which go directly to the goal via
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a Snell’s-Law path across one of the edges incident upon Vi. The boundary which separates paths which cross
one cdge from shose which cross the other edge conform to the situation described in Theorem V-0.4, and so

the boundary will conform to Equation Set 4. ¢

LEMMA V-5.9:Given a high-cost HCA with interior goal G and vertex V; with associated hidden-edge/goal
bourdary which intersects edge ViVis+1. Then there will be a corner-cutting boundary which begins at the point
of intersection and continues into the exterior conforming to a degenerate form of Equation Set 4, where onie

edge-crossing degericrates to a point crossing.

PROOF V-5.9:(See Figure 33, boundaries labelied "h".) At the point of intersection of the hidden-edge/gozi
boundary with edge ViVi+1, there are two optimal paths; one goes directly-to the goal, and the other goes
through V;. A point just outside the HCA in the vicinity of tae point of intersection may therefore have a path
which goes to-Vj, or which crosses edge Vi¥is1 en route to the goal. The boundary separating such points is
therefore a boundary between a region which has a point as root, and one which has ar edge-crossing as root.

This is a degenerate form of the sitvation of Theorem V-0.4, so Equation Set 4 applies. ¢

THEOREM V-5: Given a high-cost HCA with interior goal, the boundaries associated with the HCA arc as
described by Lemmas V-5.1 through-V-5.9.

PROOF V-§: (Sce Figure 33.) Follows directly from Lemmas V-5.1 through V-5.9. ¢

LEMMA V-6.1:Given a low-cost HCA with interior goal point G, there are no boundaries in the HCA inte-

rior.

PROOF V-6.1: (Sce Figure 34.) Assume that there is a point P with optiinal path OPL(P) = (R IOPL(R)), i.c.,
that the path does not go dircctly to the goal. R must lic on an edge or veriex, by Theorem 1-2, In cither case,
the path musi be longer in Euclidean distance than the line segmcni'@-l'é'. by the triangle incquality. Since the

interior cost-rate is lower than the exterior cost-rate, there is no advantage to a path 1o use the exterior cost-
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rate, so the cost of PG must be less than IPRI + I(RGY*1, which is a contradiction. Therefore all interior points
have the path list [G]. By the definition of 3 homogeneous-behavior region, the entire HCA interior is a single

region, so there are no interior boundaries. ¢

LEMMA V-6.2: Giverra low-cost HCA with interior goal G. From each vertex V there are two vertex/edge-
crossing boundaries separating points whose optimal paths go through V and then 1o G frem those which cross
an edge obeying Sneli’s-Law and then go to G: Each boundary-lies on the the path from G through V which

obays Sncll’s Law for crossing one of the edges incidentupon V,

PROOQF Y-6.2:(See Figure 34.) Consider z point P in.the HCA exterior arbitrarily close to the exterior leg of
a Snell’s-Law path from G through V with zespect-fo edge E. The optimal path from P goes through edge E
obeying Snell’s Law, By the principle of optimality (Theorem I-1), all points along thatpath also have optimal
paths which lie on the same path, Thus, the boundary is a ray lying at the angle prescribed by Sueil’s Law. €

THEOREM V-6:Given a low-cost HCA with interior goal. The interior has no boundaries, and the exterior

boundaries are as described in Lemma V-6.1.
PROOF V-6:Follows directly from Lemmas V-6.1 and V-6.2.¢

LEMMA V-7.1:Given a low-cost HCQ with exterior goal, cach edge is an Aica-edge boundary.

PROOF V-7.1:Trivially truc. ¢

LEMMA V-7.2:Given low-cost HCA with exterior goal G and vertex V such that the optimal path from V
gees initially into the HCA interior. Then a vertex/edge-crossing boundary exists for cach edge incident upon
V which is the sccond Jeg of a path from G through V which obeys Snell’s Law with respect (o the edge, and
separates paths starting in the exterior which go through ¥V from paths which cross the edge. If e optimal
path from V goes iniially along an cdge cf thz HCA, one such boundary cxists with respect to the edge inci-

dent upon V not travelied by the path from V.,
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PROOF V-7.2: (Sce Figure 35.) The same reasoning as in Froof V-6.2 apulies here. ¢

LEMMA V-7.3:Given low-cost HCQ) with exierior goal G, interior cost-rate 1, exterior cost-rawe re, and ver-
tex V such that the optimal paiki from V goes initially a'ong an 2dge of the HCA incident upon V. Then a ver-
texledge-foilowing boundary exists which is aray from-V along alinz which makes the angle 772 + O with

the edge, where . = sin™! (s/re).

PROOF V.7.3: (See Figure 35.) The analysis is the same as Proof V-6.2 atove. ¢

LEMMA V-7.4:Given low-cost HCA with extcrior goal G, and veriex V with optimal path which goes ini-
tially along ~.1 edge of the HCA. There is a parabolic edge-foilewing/goal boundary which tegins along the
edge, conforms to Equation 2, and separates paths which go to the edge and follow it, from paths which go

directly to the goal.

PROOF V-7.4: (Sec Figure 35.) The proof is the same as for the ncar-side-road- travelling/goal houndary for

road scgments in Proof V-3.4.¢

LEMMA V-7.5:Given low-cost HCA with extericr goal G, and vertex V such that the optimal path from V
lies zlong an edge of the HCA incident upon V. Then there is a hyperbolic vertex/goal voundary which con-

fozms to Equation 1, and scparates paths which go through V from those which go directly to G.

PROOF V.7.5: (Sce Figure 35.) The proof is thie same as for road-cnd/goal boundary of road segments, Proof
V33.¢
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LEMMA V-7.6:Given a low-cost HCA with exterior goal and vestex Vi such that the optimal path from Vi
lies in the HCA interior, and vertex Vi.1 adjacent to Vi and closer to G. A edge-crossing/goat will exist if the
vertex/goal boundary associated Vi.1 intersects the both vertex/edge-following boundaries emanating from Vi:
1. It will conform to a degenerate form of Exuation Set 6, and sepasate paths which cross edge ViVi.1and then -

cross a visiblc edge en route to the goal, from paths which go straight to the goal.

PROOQF V-7.6: (SecFigure 35.) At the point at which the hyperbolic vertex/goal boundary intersects the ver-
tex/edge-following boundary associated with edge V;iVi.1, the two regions not common to the boundaries are
the one whose paths go straight to the goal, and the one whose pathis cross the edge en rcute to a second edge
crossing, and the goal. But this is the form of Theorem V-0.6, where one pair of edge-crossings degenerates

to a single point- crossing. Thus Equation Set 6 applics. ¢

LEMMA V-7.7:Given low-cost HCA with exterior goal G, and vertex V with optimal path which goes dircct-
Iy 10 the goal, such that V is not incident to any other homogeneous-behavior-regica boundaries. There is a

visible- edge boundary in the HCA interior which begins at V and continues across the HCA 1o a hidden edge.

PROOF V-7.7:Consider points inside the HCA near V. The path from such a point crosses one edge incident
upon ¥ or the other (Sec Figure 33). Thercfore, there are two regions inside the HCA, and the voundary
separates the two. Since the region roots are both edges crossed by paths, Theorem V-0.4 applies, so the bound-

ary conforms to Equation Sct 4, ¢

L¥MMA 7-7.8:Given low-cost HCA with exterior goal G, and vertex V with optimal path which goes direct-
ly to the goal, such that V is not incident to any other homogeneous-behavior-region boundaries, and given
the visible- edge boundary in the HCA iaterior as specified in Lemma V-7.7. There is an opposite-edge bound-
ary in the HCA exterior which begins at the point of interscction of the visible-edge boundary with the hidden

cdge and conforms to Equation Set 5.
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PROOF V-7.8: At the point of intersection of the visible-edge boundary with the hidden edge, there are two
optirnal paths, which cross the two 2dges incident upon V. Points in the HCA exterior near this point of inter-
section will cress into the HCA interior, crossing on one side or the other of the poir:t of intersection, Points
which cross on one side will traverse the HCA intzrior and cross one of the edges incident upon V, while points
which crosson the other side will cross the other edgeincident upon V. Therefore, the boundary which separates -

points with these two behaviors conforias to Equation Set 6. 4

THEORE V-7:Given a Jow-cost HCA with exterior goal, boundaries are generated according to Lemmas
V-7.1 through V-7.8.

PRQOF V-7:Follows dirccdly from Lemmas V-7.1 through V-7.8. ¢




APPENDIX B - POINT-TO-POINT WAVEFRONT PROPAGATION
ALGORITHM

algorithm wavefront-propagationr.
input: Start-Point, Goal-Point
{
Wavefront := Start-Point;
while (Status = INPROGRESS)
expand-wavefront(Wavefront);
if (Status = DONE)
Onptimal-Path := Goal-Point concatenated
with back-path(Goal-Point);
else
Optimal-Paih is undefined;
)

procedurs expand-wavefront
Anput: Wavefront
{
if (Wavefront is empty)
Siatus :=NIL;
clse

(Algorithm B-1)

/* iteratively expand wavefront until */
/* status is DCNE or NIL */

/* status is NIL, so no feasible solution */

/* end of wavefront-prcpagation */

/* Base cace of recursion, If empty at 1st call ¥/
[* w0 expanG-wavefront, shere is no feasible path */

Current-Celi := cell on Wavefront with min remaining cost;

expand-cell{Current-Cell);
i not (Status = DONE)
{

Rest-of-Wavefront := Wavefront Iess Current-Cell;

expand-wavefront(Rest-of-Wavefront),

if not (Status = DONE)
(
Wavefront := Cells-for-New-Wavefront

appended onto front of Wavefront;

Status := INPROGRESS;
)

)

)
)
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/* recutsive call 10 expand-wavefront */

/* Mote: Wavefront is recursively emptied */
/* out ievel by level and new Wavefront */
J* is built up as each level returns. */

/* end of expand-wavefr ynt */




procedure expand-cell
input: Current Cell

{

Finished-With-Cell := TRUE;
Ceils-for-New-Wavefront := empty list;
for (Nev-Cell := North-, East-, South-, and West-Neighbor)

orthogenal-expand(Current-Cell,New-Cell)

[/* initialize flag to assume that Current-Cell */
/* will not stay on Wavefront */

for (New-Cell := Northeast-, Southeast-, Southwest-, and Northwest-Neighbor)

diagonal-expand(Current-Cell,New-Cell);

if not (Finished-With-Cell)
Cells-for-New-Wavefront ;= Current-Cell appended

onto Cells-for-New-Wavefront;

if (Cells-for-New-Wavefront contains Goal-Point)

Status := DONE;

else

}

Status := INPRGGRESS;

proccdure orthogonal-expand
input: Current-Cell, New-Cell

if ((Parent-Pointer-of-New-Cell is not yet set)

*/

J

or (Parent-Pointer-of-New-Cell = Current-Cell)
or ((Initial-Cost-of-New-Cell - 1.414)

< Cost-of-New-Cell))
{
Parent-Pointer-of-New-Cell := Current-Cell;
Cost-of-New-Cell := Cost-of-New-Cell - 1.414;
if (Cost-of-New-Cell < 0)

overflow(Current-Cell, New-Cell);
Cells-tor-New-Wavefront := Overflow-List
appended onto New-Cell;

else

Cells-for-New-Wavefront := empty list;
Finished-With-Cell := FALSE;
)

)

/* keep Current-Cell on Wavefront ¥/

/* end of expand-cell */

/* if this is first cell to expand into New- */
[f* Cell, or this path costs less to expand into */
/* New-Cell, setbackpointer and explore New-Cell.

/* Current-Cell becomes parent of New-Cell, */
[* decrement cost of New-Cell */

f* if New-Cell has been fully explored, */
/* then New-Cell and possibly an overflow */
7* cell are added to new Wavefront »/

[* if New-Cell has not been fully explored, */
/* New-Cell is not added to new Wavefront */
/* but reset the fiag to note that */

/* Current-Cell must stay on Wavefront */

/* end of orthogonal-expand */




procedurc diagonal-expand
input: Current-Cell, New-Cell

if ((Parent-Pointer-of-New-Cell is not yet set)
or (Parent-Pointer-of-New-Cell = Current-Cell)
*/  or ((Initial-Cost-of-New-Cell - 1.0)
< Cost-of-New-Cell))
(

J* if this is first cell to expand into New- */
#Cell, or this path costs less to expand into */
/*New-Cell, set backpointer and explore New-Cell,

Parent-Pointer-of-New-Cell := Current-Cell;

Cost-of-New-Cell := Cost-of-New-Cell - 1.0;

if {Cost-of-New-Cell < 0)
Cells-for-New-Wavefront := Cells-for-New-

/* Current-Cell becomes parent of New-Cell. */
/¥ decrement cost of New-Cell, */

/* if New-Cell is fully explored, */

/* add it to new Wavefront. */

Wavefront appended onto New-Cell;
else
/* if New-Cell is riot fully exylored,*/

Ceils-for-New-Wavefront := null list; /* do not add it to new Wavefront */
Finished-With-Cell ;= FALSE; /* and reset flag to insure that Current-Cell */
) /* gets put back on Wavefront. */

)

} /* end of diagonal-expand */

procedure overflow
-input: Current-Cell, New-Cell

{
Overflow-Cell := cell on opposite side of New-Cell from Current-Cell;
-if ((Parent-Pointer of Overflow-Cell is not yet set)
or (Parent-Pointer of Overflow-Cell = New-Cell)
or ((Initial-Cost-of-New-Cell - 1.0)
< Cost-of-New-Cell))

Parent-Pointer of Overflow-Cell := New-Cell;
Cost of Overflow-Cell := Cost of
Overflow-Cell + (Cost of New-Cell);
if (Cost of Overflow-Cell < 0)
{
overflow(New-Cell, Overflow-Cell);
Overflow-List := Overflow-List
appended onto Overflow-Cell;

/* Current-Cell becomes parent of New-Cell, */
/*decrement Overflow-Cell by the negative */
/* amount left over from New-Cell. */

/* if necessary, call overflow again. */-

else /* else Overflow-Cell is noi */
Overflow-List := empty list; /* added to new Wavefront, */
)
clse /* if Overflow-Cell already has */
Overflow-List := empty list; /* a parent, do nothing. */
) /* end of overflow */
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APPENDIX C - WAVEFRONT-PROPAGATION OPM CONSTRUCTION
SOURCE CODE

;Qi...tﬁhﬁ‘b.ﬂﬁﬁﬁﬂﬁQ‘h0ﬂt0ii.QﬁﬁiQﬂﬁlQﬁQQQQﬁﬁﬁi.ﬁﬁi.ﬁﬁtﬁ‘iﬁthﬂﬁi.ﬁﬁQQ
;Qﬂﬁﬁﬁﬁﬁﬁﬂ.ﬁﬂhﬁﬂﬂﬂﬂ.ﬁﬁﬂ‘ﬁﬁhit.ﬂﬁﬁllﬁﬁ.ﬁﬂ.ﬁﬁﬁﬁ"Q..ﬁ-\‘ﬁ'.lﬁllﬁ.ﬁ.ﬁ.ﬁh*ﬁ

pheska "opm® creates an optimal path mup by f!nding -the boundaries
;*4ese hetween regions of similarly-behaved optimal paths using the
;****+» wavefront propogation algoritlm. The basic structuce of the
;%%%44 wavefront algoritiun used is adapted from a Prolog -program

;#ssss by MAJ Bob Richbouxg, June ‘87,

;%%%ee This is the "pure" version which tesats for boundaries by checking
p4ases for the equivalent turn-points in the optimsl-path list of

p4+4¢» peighboring cells.

:Aﬂ.hh

;44444 Current as of 27 Jun 89

;.Q.QQ

;*4aase Input: files "declar®, "initmap®, "utils™, “"bdxy", & “graphics".
$4%44s QuLput: Graphical vutput to the host Symbolics screen.
'-QQQQQQﬂﬁAﬁﬂ.ﬁﬁi‘thh.tﬂﬂtﬁ..‘ﬁﬂﬁﬂﬁiﬁQﬁQﬁﬁ‘.ﬂﬁﬂi.ﬁ.ﬁ.‘hhﬂtlﬁﬁ.ﬁﬂ..QQQQﬁ

’vQQ.QQQQ!Q_QQ'QQQ‘Q.ﬁﬂ.ﬂ.ﬂe.ﬂ..ﬁﬁﬁﬂﬁ!Ahﬁ.lﬂﬁi.ﬁhﬁhﬂ.‘ﬂﬁﬁﬁﬁﬁ‘ﬁhglﬂl.Q‘ﬁﬁ

;QAQA!ﬂhhh‘:ﬂ..ﬁﬁllhAAQ.QQf‘l.ﬁﬂh.‘ﬂﬂﬁﬁ.ﬁﬂﬁﬁﬂ.ﬁﬁﬁﬁﬁ.ﬁ.tﬁﬁn....ﬂﬂﬁ‘lﬂﬁlﬁ
sA*#42 Function "opm" is the top-level functicn of file opm.lisp
JARARD Arguments: none

PRAAAL Returned: T,

Hiskh Side Effects: sets *boundary* array with the pixels which

PRI represent region boundaries,

phhnan Functions Used: initialize-map, initialize-graphics,
T expatid-wavefront, draw-and-show-windows,

shenae draw-and-show-bdry-window, kill-windows,

sennen and ‘report-completion,

(defun opm ()
(setf *internsl-timel* (get-internal-run-time))
(setf *external-timel®* {get~-universal-time))
{initialize)
{princ "Init Process Time: ")
(prinl (- (setf *internsl-time2* (get-internal-run-time)) *internal-timel*))
({linefeed)
(prine " -Elapsed Time: ")
(prinl (- (setf *externa.-time2* (get-universal-time)) *external-timel*))
(lineteed) '
{do ({Wavefront (list ¢*gocal*)

{expand-vavefront Wavefront)))

((null Wavefront)))
(draw-and-show~-window))

{cond ((equal nil *incremental-bdry-checkh*) (check-all-boundaries)})
(princ " Expansion oncess Time: ™)
(prinl (- (sctf *internal-Limel* {get-internal-grun-time)) *internal-time2¢))
(linefeed)
{princ " Elspsed Time: ")
(prinl (- (setf *external-timel* (get-univercal-time)) *external-time2+))
(lLinafeed)
{(draw-and~show=-bdry-window)
{cond ((null “incremental-bdry-check*) (show-backpaths)))
(report=rompletiony)

:ppo-ag»tlo-oﬂiat»oog,p»QQQﬁnnfoﬂﬂﬁﬁi’oﬁﬂnl,f.hahanﬁahﬁaAhhhﬂhﬂgﬁf&‘.-A&hlhi

j*v*+» Functinn initialize losda files, preprocesses the map, and

2hP e
’

‘nitjalizen the graphies ascreen.
(defun initialize {)

(load "declar”)

(load "initmap")

(Inad "utila")

(load "hdry")

{load "yraphica")
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{initialize-map;}
{initislize-grasphics)
{princ "Beginning Wavefront Expansion®) (linefeed) (1inefeed))

:QQQQ.Q.AQOQO.".QOQQQ‘R90.ﬂ-Q.tﬁtﬁiﬁﬁﬁﬁﬁ.ﬁﬁﬁﬁiﬁ’ﬁﬂﬂQﬂ'.hﬂ.‘ﬂﬁﬁ.ﬁﬂﬂﬂﬁﬁ.ﬁ

;o%%ee Function expand-wavefront: computes the ner” vavefront by taking

PR the first pair of cell coordina. s from the wave
A and processin, ..t, then recursively processing
PRl the rest of the list in the same manner.

:hhars  Argument: Wave, the remaindexr of the old wavefront left to process
pannns Returned: the new wavefront, or nil if Mave becomes enpty
;4%**+  Side Effects: see below
ghanae Functions Used: expand-cell and expand-wavefront
{defun expand-wavefront {(Wave)
{cond ({null Wave) nil)
(t (append (expand-cell (car Wave))
(expand—wnveftnnt (cdr Wave))))))

'o’QQﬁttaﬁ..'.ﬁb..hitﬂﬁQQQQQQﬁﬁﬂ.ﬁ..ﬁiiﬁﬁ.ﬁ..ﬁﬂi.’ﬁﬁﬁﬂﬁﬂ.ﬁﬁ....t..'..ﬁthﬁ

;%**** Function expand-cell: determines which of the eight neighboring

phesee cells will be on the new wavefront and whether there is a
i region boundary sround the center cell.

FLLL LA Argument: Celi, a list of the X,Y coords of the cell on
bl the curxent wavefront -being processed.

$#ssss  Returned: A list of cells to be added to the new wavefront
phrres Side £ffects: none
Pkl bl Functions Used: orthog-expand, diag-expand-
I A XX ¥
{defun expand-cell (Cell)
(setq *finished-with-cell-p* ‘t) ; initislize flag - assume
: cell will not stay on wf
{cond ((not (null *incremental-bdry-check#*)) (check-for-boundaries- Cell}))
{let* ({X {(car Cel)))
(Y (cadr Cell))
{Cells-to~-add
{nreverse
(remove nil
(append
{(orthog-expand (list X (1+ ¥)} (list X Y)
{orthog-expand {list (1+ X) ¥Y) (list X Y)
(orthog-expand (list X (1- Y)) (list X Y)
(orthog-expand (liat (13- X) ¥Y) (list X Y)
(diag-expand (list (1~ X) (14 ¥}) (list X Y))
(diag-expand (Jiat (2t X) (1t Y)) -(list X ¥))
(diag-expand (list (1+ Xj (1- Y)) ‘{1list X ¥))
{diag-expand (list (1= X) (1- Y)) (list X ¥)))))))

)
)
)
)

{cond
({(null *finished-with-cell-p*) : 1f some neighbors are not fully
(cons (list X Y) Cells-to-add)) ; explored, leave center cell on wf

(t Cells-to-add))))

:00000600QQQOQQ’0.0000QQ00000.t&ﬁ.}00.0’09’Oﬁﬁ000*00900'*00000’&0‘6’0&’Q
;%4444 Fupction diag-erpand: explores a cell wihich is in s diagonal
shbres direction from the cell being expanded.
I Argument.s: same as orthog-expand
ghases Returned: A list consisting of a list of cells to be added to
pheeee the new wavefront and a flag to note that (1) Center-cell
presss fivs fully explored iss- neighbor, oxr (0)- it has not. N
phtle Side Effects: Sets the parent coords of New-cell i{f they are nil
(defun diag-expand {(Mew-cell Center-cell)
flet ((¥n (car Hew-cell))

(Yn (cadr New-cell})

(%o (car Center~-celi))

(Ye (cadr Center=-cecll)))
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fceng ((null {avef *cell* Xn- ¥n 1})
(et (azef *cell* X Yo i)

I1f Rew-cell not explored
'vet, and is not an obatacle,

“s w3 W e

Center~cell) Center-cell becomes its parent
{set-opl Xn ¥n Xc Yc} Set Opt-Path-List for {(Xn,iIn):
(setf (arei *cell* Ya Yn 0} ¢ Decrement cost

(- (acef *cell* Xa ¥n Q) 1})
fcond {(<w {aref *celll A ¥n 0} 0)
(setq ﬂbackpach—pixe‘-list’
(ap:pznd
{ger-trackipsth Xn ¥Yn)
*hachpat i~pixel-1ist*))
(liss New-cell))
{t {setq *finished-with-cell~p*

If Newcell is fully explored

add its parent to the
display 1ist of parents
and add New-cell to wave.
If New-cell is not fully

“s ®e Ny we W we

nily))) ; explored, don’t add to wf,
: and note that Center~cell
; must stay cosn wavefront.
{{and {~ Xc -(car (aref “cell* Xn ¥Yn 1))) : If tiewcell’s parent is
{= Yc (cadr (axef *celli* X5 ¥n 1})) ; Center-cell and Newcel!
(> taref *cell” X» ¥n-@¢) 0)) ; not fully exploered,
{setf (aref *cell* Xn ¥n 9) : Decrement cost.

{~ (aref *cell* Xn ¥n 0) 1)
(cond ‘((<= -(areLf %*cell* Xn ¥n G) 0) ,; If Newceil is fully explored
{sntq *hackpath-pixel-List?*
{append
{get-backpath Xn Yn)
*backpath-pixel-list*)}
{list Hew-cé&ll)} 7 Add curzent new cell ro wf
{t {setq *Lfinished-wirh-cell-p* 1£ New-uvell is not fully
nil})d}} explored don’t add it to
wf,and note that Center
mast stay on wavefront.
{t nil))})) : Y£ Haowcell was already grplo:-d, don’t sdd to wave, -

Add parents to the
-backpatz display

. vy

~e %e “m Sa

;QOQQOQAQOQQOQQ."“Qih.ﬁiﬁébﬂﬂlﬁhﬂﬁﬁ..QQ;Q&0.0Q’QQQ%QQ‘&Q.&QQQQ.QQ'QQQ.
;44444 Function orthog-expand: explores a cell which is in an -orthogonsl
parsan direction from the cell being expandasd.

paeree Arguments: the first argument is a list of the X,Y

peseen coords of the cell bheing explored; the second is a list
ghhhas of coordinates of the cell on the current wavefront

FHA i being expanded from.

Had Returned: A list of two elements: the first is a list of
phatse new cells to be added to the new wavefront and the second
Al is 2 flag set as indicated above (in diag-expand)

pa**2s Side Effects: Sets the parent coords of New-cell if they are nil
(defun orthog-expand (Haw-cell Center-cell)
{let {(Xn (car New-cell))
(Yn (cadr New-cell))
(Xc {car Center-cell))
(Yc {cadr Center-cell}))
{cond {((null (aref *cell* Yn Yn 1})

If New-cell not explored
{(setf (aref *cell* Xn ¥Yn 1)

y=t, and is not an obstacle,

.. w3 W

Center-cell) Center-cell becomea its parent
{set~opl Yn ¥n Yc ¥Yc) ¢ Set Opt-Path-List for (Xn,¥n)
(setf (aref *cell* Xn ¥n 0) ; Decrement cost

(- (aref *cell”* o Yn 0) 1.414))
{cond ( (<~ (arcf *cell* Xn ¥n 0) 0)
(sctq *backpath-pixel-list®
{append
(get-backpath Xn ¥n)
*backpath-pixel-list*))
(sppend (ovezflow
Hew-cell
Center~cell)
(list Hew=-cell)))

1f New-cell is fully explored

Add its parent to fhe
display list

Explore next cell in dir-
ection of expansion & add
any vverflow cells,

Add current new cell to w{

®e %4 Wa We We We We “e
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((and (v Xc (car (aref *cell® Xn Yn 1)))

; to right of overflow cells.
: Else if Newcell not
; fully exploxed don’t add
: it to -wf,and note that
: Centexr-cell stays on wf.

(t (setq *finished-with-cell-p*
nil) nil)))

: If Newcell’s parent is
(=~ ¥Yc (cadr {(aref *cell® Xn ¥n 1))) : Centerx-cell:
(> (aref “‘cell® %Xn Yn 0) 0))
(setf (aref *cell* Xn ¥Yn 0) ; Decrement cost.
{~ (aref *cell* Xn ¥n 0) 1.414))
(cond ((<= (aref *cell* Xn ¥Yn 0) 0) : 1If Newcell is fully explored
{setq *backpath-pixel-list+*
(append Add parents to the

(get~backpath Xn ¥Yn) ; backpath display
*backpath-pixel-list*))
(append (overflow
New-cell
Centex-cell)
(list New-cell)))

Explore next cell in dJdir-
ection of expansion & add
any overflow cells.

Add current new cell to wf

; to right of overflow cells.
If New-cell is not fully
explored don’t add it to
wf,and note that Center
must stay on wavefront.

(t (setqg *finished-with-cell-p*
nil) nil)}))

ve e vs e

(t nil)))) ; If Newcell was already exploxed, don’t add it to wf.

'-OtQOQGQQIQOQQQ.ﬁQQQ.0000..QQQQQQ..QQQQQOQQQAQOQAQOQQQ‘OQQQQOQ\\QQQQQQQQ‘*
;44%%¢ runction overflow: determines whether expansion shovld <ontinue

searee
:00..0
saasss
H
o
copsse
’
XXX
’ —
:00006
chAdIS
’
s0shoP
H

IXE X R ¥4
’

into the next cell in the {(orthogonal) direction in which

it has been going, and expands if necessary.

Arguments: the first is a list of the X,Y coords of the cell
into which the wave will overflow; the second is the coords
of the cell from which it overflowed,

Note that Center-cell in this function is the veriable
called New-cell in orthog-expand, and Farent-cell here is
called Center-cell in orthog-expand.

ketuzrned: A list of cells to add to wavefront

Side Effects: ceil costs are decremented

(defun- overflow (Center~cell Farent-cell)

(let* ((Xc (car Center-cell))
{Yc (cadr Center-cell})
(Xp (car Fsrent-cell))
{(Yp {cadr Parent-cell))
(Yn (¢ Xc - Xc Xp))) ; Exploxe the next cell in the direction
{(Yn (¢ Yc {- Yz ¥p))) : of the previous expansion
{Mew~-cell (list Xn Yn))
(overflow-cost : Check if overflow is at
; & boundary;
{cond ({null (aref *celi* Xn ¥Yn 0)) O) : it not,decrement cverflow
: cell by the (negative)
(t (+ (aref *cell* Xc Yc 0) ; amount left over from
(agxef *cell* Xn ¥Yn 0}))))) : previous cell.
{cond ((null (aref *cell* ¥n ¥n 1)) ; 1f overflow cell is unexzplored,

(setf (aref *cell* Xn ¥n 1)
Center-cell)

(set-opl Xn ¥n Y<¢ Yc)

Haobf {aref foalls ¥n ¥n.O)

Set overflow cell parent
to the explored cell,
Set Opt~-Path-List for (Xn,Y¥n)

we % v W

overflow-cost)
{cond ((< overflow~-cnat Q)
{9etqg *hacrpath-pixel-1ist*
{append : Add parent to the
(get-hackparh ¥%n Yn) : backpath display.
‘hackpath-pixel=liast*))
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(append (overflow { 1f moxe overflow, expand again,

New-cell : and add Newcell to wave list.
Center-cell)-
(list New-cell)))
{t nil))) ¢ Else put nothing on wavefront.
{t nil)))) ;

; Else put nothing on wavefroiic.
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$2: =*= Mode: LISP; Syntax: Common-Lisp; Package: USER- —*-~

:Qnahﬁﬁ.tﬁiﬂtQaQﬁtQh\lﬁﬁtﬁﬂ*aﬂhﬁﬁdﬂﬁﬁiﬁﬁhﬂﬁﬂﬁnAﬂﬁﬁﬁhﬁﬁﬂﬁiﬂﬁhﬁﬁ.ﬁtﬂ‘ﬁﬂﬁ
:hﬂo.aﬂatﬁtﬁﬁﬂ**.ﬁﬁﬂﬁﬂﬁtﬁtﬁﬁtﬁﬂiﬁﬁﬂhtﬁ*ﬁﬁﬂQﬁﬁﬁ*lQﬂﬂﬁﬁﬁﬂﬁﬁﬁﬁﬂtﬂﬁﬂﬂﬁﬁﬁﬁ
s#+%4+ ndeclar” contains the declarations of ‘global variables used
i*#*es by "opm”, It is loaded by function "opm" in file "opm.lisp".
;#*4#% This version is for use with maps in the form of a rectangle

;4**** of characters.
:QQ.'.

;#%r44 Current as of 7 Jun 89
;Qﬁhﬂ.

sheras gide Effects: initialization of *cell* and *bousidary* arrays,

PRk and other global variables a® listed below,
;Oaﬁaoﬁhﬁltﬁttﬁtﬁﬁ.tﬁﬁ.ﬂtﬂﬁﬂQQﬁﬁﬁ.tﬁﬁ.tﬂ.hﬁ.‘...ﬁﬁﬁﬂﬁﬂﬁ.Qt"ﬂﬁﬂﬁﬁﬁ‘.ﬁ

'-l.Q.Qh.ﬁiﬁh.thﬁ‘ﬂﬁﬂﬂﬁhhﬁﬁﬁlﬂtﬂﬁhﬁiﬁﬁQA.QQA.QQA...‘.hhﬁ“ﬁﬂﬁ‘...hﬁ.‘t

s*A*4+ Global Variables:

(defvar *version*)

: {setf *version* “"pure”) (setf *vertex-list* nil)(setf *edge-list* nil)

{setf *version* "vertex-edge®)

7 (setf *version* "diverging-path") (setf fvertex-list*® nil) (setf *edge-list* nil)

(defvar *incremental-bdry-check*) javnst get to 't if check-boundaries should
{setq *incremental-bdry-check* ’t) s*#ndt he done at each expand-cell, nil Jf not.

{defvar *internal-timel*)
(defvar *external-timel*)
(defvar *internal-time2+*)
(defvar *external-time2*)

(defvar *map-width*) j#htes Max a)llowable number of columns in the

(setq *map-width* 205) H map + 2 for bordering columns of blanks

(defvar *map-length*) :#*24% Max allowable number of lines in the

{setq *map-length* 155) map (=153) + 2 (=155) for the bordering lines of blanks
(defvar *magnification*®) ;*#422 Mggnification of the screen.

(setq *magnification* 3) ;

(defvar *river-cost®) jhat4r Cost to cross a river

{setq *river-cost* 16)
{defvar *road-cost?*) ;®AA%% Cost to use-a
(setq *road-cost* 0.1)
{(defvar *mapline*)
(setf *mapline*

(make-array

(list *map-length?*)))
{defvar *terrain-pixel-list?)
{(setq *terrsin-pixel-list* nil)
(defvar *boundary-pixel-list*)

a*44% Array to

~. % “e

List to
of
List to

.. v W

{setq *boundary-pixel-list* nil) : of
{(defvar *backpath-pixel-list*) ; List to
-(setq *backpath-pixel-list* ni)) H of
(defvar *finished~with-cell~p#*) : Tlag to
(defvar *output-stceam*) H

xoad

hold the input map: each element

is a string, each of whose characters
represents one cell of the map.

hold cooxdinates

terrsir. pixels,

hold coordinates

boundary pixels.

hold coordinates

backpath pixels.

record if cell stays on wave,

Can be used to define cutput stream

{defvar *goal*) ;**4+44 coordinates of goal point

(defvar *cell?)
(setf ‘*cell”
’ {make-array
(liat
*map-width*
‘map-length*
4]))

sasts Jedimen array

-2 AP P 30 P it v £ 14

if specified,

Se e “a We e %o We % %o S M

if applicable
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whose first and second indices

are the cell coordinates and: whose third inuex
-apecifisa-ths siribote:

Attribute 0 is cost to traverse Che cell,
decremented as wave passes over cell,
Attribute 1 is list of parent’s coords

nil if not.

Attribute 2 is list consisting of the
character symhol of the cell, followed if

by an edge id and vertex flag




Attribute 3 is coords of ort-path-ligt parent
#4sss Bit-valued array -to mark region boundaries.
The (X,Y,0) elament specifies- whetliex thexe is

(defvar *boundaryt)
{(setf *boundary*

(make~array a boundary to immediate right of cell (X,Y).
(list The (%,Y,1) element specifies whether there is
*map-width#* a boundary immediately below cell (X,Y). -
*map~-length# Altho this array has enough info to specify
2) boundaries between pixels, pixel (X,Y) is

telement-type ’‘bit)
(defvar *edge-list*)
{defvar *vertex-list?*)

plotted us the boundary.
These lists arc for the heuristic version, and
list all edge cells with edge id & vextex cells,

we %e s ng Se W) By W We N we
»
» v
»
»
»
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;:; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER -*-

:Albkﬁ.h‘t.lihhﬁﬂ’ﬂﬂﬁ‘ﬂiﬂﬂ}ﬁﬁlthﬁﬁtﬁﬁAﬁﬁ.}QQQQhﬁ‘hhﬁlliﬁhﬁhhlﬁ‘ﬂhiﬁhﬁ
:llQhﬁ‘hiﬂ.lﬁh..ﬁlﬁtﬁ.ﬂiﬁﬁ*h.ﬁﬁﬂﬁﬁﬂﬂﬂkﬂ*ﬂ*lt‘ﬁﬂﬁll“ﬁh‘ﬁ}‘lhtﬁﬁﬁﬁthﬁﬁ
sasnrtr "initmap” contains the functions used by "opm” to examine
;#4*4% the map symbols and encode them into elements of the

jhhass Acell* array. It is loaded by function "opm™ in file "opm”.

s#r444 This version is for use with maps in the form of a rectangle
;#hrss of characters.

;OOQ.Q

j##4** Current as of 8 Jun 89

;Aﬁﬁ.ﬁ

pa#asr Input: file "map™, an array of cell attributes
shAIAN

jassss Side Effects: Loads file "map.lisp®, and sets the
paanas elements of the *cell* array according to the
Pl associated map symbol. Adjusts *map-width*,

;QQQQQQQQAOQQlhﬂ‘t.ﬂ'ﬂﬁﬂlﬁﬁQﬁhhﬂhﬂtﬁhthﬁil.ﬁﬁ.hﬁﬁﬁﬁ*.ﬁﬁhﬁﬁﬁﬁﬁﬁﬁﬁ‘.ﬂﬂb

;QQQQQQ.QQQQQQQt.ﬁ.ﬂﬁﬂﬁQtﬁtﬁﬂtﬁﬁ.ﬁtﬂﬂ..tﬁﬁ.tﬁ.ﬁ'ﬁ.Iﬂﬂﬁﬂﬁ*ﬂﬁﬁﬂiﬂﬁkﬁﬁﬁﬂ
s#asrs runction "initialize-map" initializes the vulues of the

Fblb b array *cell* according to the information encoded

PRl in graphic form in the file “"map®.

Fhdaad el Arguments: none-

Fdahoh el Returned: t in all cases.

phAMAA Side Effects: Loads the Lisp file "map”.

sanman Initializes the arrays *cell* and- *boundsry*
i i and adjusts the variadble *map-width*,
;%#*+4  Functions Used: process-line, process-char

{defun initialize-map ()

(load "map®) (linefeed) (linefeed)

(princ "Initializing Map™) (linefeed)

(cord ((equalp *version*® "vertex-edge")
-(process-vertex-info *vertex-list?*)
(process~edge-info *edge-liat#)))

(setq *map-width* (+ 2 {length (aref *mapline* 1))))

(do ((I O (1+ X))}

{(= *map-width* 1))
{process-char #\x 1 0))

(do(({J 1 (1+ J)))
{{string-equal “enf" (uref *mapline* J))
{do ((I O (1+ X)})

((= *map~-width* 1))
{process~char #\x 1 J)))

{cond ({>= J *map-length*)
{princ ’ [HARNING: Map too long, will be truncated|) (linefeed}
{process-1line (aref *mapline* *map-length®) 1 *map-length*))

Initialize the top
"buffer zone" row

e~

Initislize Lhe bottom
"buffer zone" row

e we

{t
iprine *  Processing Map Row ") (prinl J) (linefeed)
{process-line (azef *maplinet J) 1 J)))) -
{princ "Finished Initializing ap™) (linefeed) (linefeed))

:j00900000000.).40..0‘0ﬂﬁ.Q‘OQGI‘OQOO»OOQOQOQQQﬁ.'.‘.ﬁ.ﬂ.ﬁ'.'.ﬁ...'ﬁ.
3**%++4 Function “process-line! cvclea thru.each .chavegter of tha

FH A srgument {(a string) up to the max allowed width -of the map.
A 1t processes esch character and sends a warning

message te the screen if line is too long.

;*****  Argunents: Line, a atcing

prbess Peturn=d: t in all cas=es,

pesere Side Kffects: Sets z l-pirel horder in right & left columns

XA XX R ]
.
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shAAMA
.

e ARAMS
. -

(defun process-line (ILine X Y}

represented as an obstacle,
Functions Used: process-char

{cond ((= 0 -(length Line)} : Normal base case
(process-chaz f\x 0 Y) : Initialize the right and left
{process-char #\x X Y}; : "buffer zone” columns
¢ {(process-char ({(character (subseq Line § 1)} X ¥)
(setq X (1+ X)) -
‘(cond ((>= X *map-width#*} ; ‘Abnoxmal case if map is too wide
{process-chaxr #\x ¢ Y¥) ; Initialize the xight and left

(process-char #\x (- X) ¥) ; "buffer zone" columns
{princ ’ [WARNING: Map too wide, will be truncated|) (linefced))
(t (process-line (subseq Line 1) X ¥))))))

;ﬁ‘ﬂﬁQﬂaQQQ*ﬂ.*ﬂﬁkh.ﬂ.ﬁﬂﬁﬁgﬁ.ﬁhtthﬁﬁ.QﬁﬁﬁQﬁlﬂﬂﬁ.ﬁﬁﬁﬁ.‘.ﬁ.ﬁ.ﬁ.#ﬂhﬁQﬁﬁt

;%44%4 Function "process-char™ decodes each chsracter of the map,
setting the cost element and in .some cases the parent
of the cell indexed by X and Y, the cell’s coords,
and the parxent: of the cell on the Optimal-Path-List
Argwrents: Char, a character, and X & ¥, integers.
Returned: not applicable. 7
Side Effects: Sete the values of the {X,Y,0) element of the
*cell* acrray to the cost as specified by the characterx; .
in some cases sets the values of the (X,Y,1) and (X,Y,3)
element.s for cells having no parent.
Tunctions Used: no user-defined functions.
(defun process-char (Char X ¥
“faux X= X4+ Y- Y+)
{setq X~ (- ¥ {/ 1 *magnifiza%ion®)})

;Qﬁ..t
shbbdds
H
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(setg X+ (+ X (/ 1 *magnification*));
(setq Y~ (- ¥ {/ 1 *magnificat:ion*)))
(setq Y+ (+ Y {/ 1 *magnification*)))
(cond ((and (>= (char~int Char) 49) (<= (char-~int Char) 57))

{setf
{oetf
{aetf
(setf
{cond

({equal Char #\ )

{setf
{detf
(setf
(secf

({equal Char f\x)

{setf
{stf
{sett
(setf
{netq
{setq
{setqg
(z2tg
{setq

(azet *cell® X Y 0) (~ (char-int Chax) 48}) :
(aref *cell* X Y 1) nil)
{aref *cell* X Y 2) (cons Char (aref ‘cell* X Y 2}))
(aref *cell* X Y 3} nil).
((= 1 (axef *cell” X Y 0)) nil) -
(t (setq *terrsin-pixel-list* -
(append
{mapcar ‘magnify-pixel
(list
{list X ¥}))
*terrain-pixel-list*)))))

(aref *cell*
(arvef *cell*
{aref *cell*
(azef *cell*

0) nil)

1)} (1ist X ¥))

2) (cons Char (aref *cell* % ¥ 2)))
3) {list X ¥)))

» XXX
o

{(axef *fcell*
{aref *cell*

0) nii)
1) (list % Y))
(oxef *cell* 2) {cons Char (aref *cell®* X ¥ 2)))
{(axef *cell’ 3) (list X Y))
X= (~ X {/ 1 *magnification*)))
XF (2 %X (/ 1 *magnification?)))
Y- (=¥ (/1 *magnification®))}
Yt (+ ¥ (/ 1 *mugnification*}}))
*terrain-pixel-list* ’
{appand
{mapcar ‘magnify-pixel
{list (list ¥- ¥-)
(list X~ ¥Y)
(1ist %z~ ¥+)

XN XX
L

216




{list X Y-)
{list X Y)
(List X Y+)
{list X+ Y-)
(list X+ ¥)
(list X+ Yi)))
Aterrain-pixel-list*)))
({egual Char #\r)
(setf (aref *cell*” X Y 0) *rivex-cost*)
(setf (aref *cell* X Y 1) nil)
{(setf (aref *cell* X Y 2) (cons Char (aref #cell* X Y 2)))
(setf (aref *cell* X Y 3) nil)
(setq X+ (+ X (/ 1 *magnification*)))
(setq Y- (- ¥ (/ 1 *magnification*)))
(setq Y+ (+ ¥ (/ 1 *magnification*)))
{vetq *terrxain-pixel-list*
iappend
{mapcar ‘magnify-pixel
{list (list X+ Y-)
(list X+ Y)
(liat Xt Y+4)))
*terrain-pixel-list*)))
{({equal Char #\p)
{setf (axef #cell* X Y 0) *road-cost?*)
{setf (aref *cell* X Y 1) nil)
{vetf (aref *cell* X Y 2) (cons Char (aref *cell* X Y 2)})
(setf (axef *cell* X Y 3) nil)
{setq *terrain-pixel-list*
{cons (list X Y) *terrain-pixel-listt)))
{ {(equal Char #\G)
(setq *goal* (list X X))
(setf (aref *cell* X' Y 0) 1)
(setf (aref *cell* X Y 1) (list X Y))
(setf (axef *cell* X Y 2) (cons Char (aref *cell* X Y 2)))
isetf (aref *cell*” X Y 3) (list X Y)))))

'-9900.ﬁbQg’QQQA.QQ.QQQQQQQ‘QfQ.QQQOAQQQQQQiﬂ..ﬁ..ﬁhlﬁ’ﬁ.ﬁﬁ....‘iQﬂﬁ.ﬁﬁ‘.ﬁﬂ
;*****  Function "process-vertex-info" puts the character v into each
anene *cell* X Y 2 as a list (#\v). This becomes the third element cf
Fahhdohd -this list after "process-edge-info®™ and "process-char" happen.
(defun process-vertex-info (v-list)
{setf (arxef *cell* (caar v-list) (cadar v-iist) 2)
{list #\v))
{cond {{null (cdr v-list)))
(t {process-vertex-info (cdr v-1ist)))))

IOPPIRAANRAMARARGARAARAPADAAANASACRARAAARAARARARLMARARAAARARCARAAIAAAAMALANAS

jhéstt Function "process-edge-info" puts the id number of the appropriate
Feeers edge into *cell* X Y 2 as the first element of the list there.

[l This becomes the second element of the list after "process-char"
A is executed.

jhhhas "e~list" is a lisk of triples: e.g., .

X2 d b ((X ¥ 13) (UV 21) ... (2 W 2)), where for exsmple, 13 is the
el id nunber of the edge on which cell (X Y) is located.

(defun process-edge~info (e-list)

et (X (Eirat (firmt .ea=)iat))l
(¥ (second (first e-list)))

({EdgeID (thirxd (first e-~list)}))

{cond ((characterp
(first (aref *cell* X Y 2)))
{setf (aref *cell* X ¥ 2j
(cona (list EdgelDd)

If cell is a vertex, and

no other edge id hus been
-set for this cell, set 1lst
element of list to EdgelD,

*e e wo wa
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(aref *cell* X Y 2})))
({null (fixst (aref *cell* X ¥ 2))) : 1f
(setf (aref *cell* X Y 2) 3
(list (list FdgyelD)}))) ; set
{(listp (first (aref *cell* X Y 2)))
(setf (aref *cell* X Y 2)
{cons (cons EdgelD
(first (aref #cell* X Y 2)))
{rest (arxef *cell* X Y 2)))))) :
(cond {(null (rest e-list)})
(t (process-edge-info (rest e-list))))))

213

cell is not a vtx, and no

other -edge id-has- been set,.

EdgelD

: 1f another edge id has
been set for this cell,
cong EdgelID onto the
1st element of the

previous list.
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$:: =*= Mode: LISE:; Syntax: Common~Lisp; Package: USER -#%-

;tﬁﬁhﬁa.ﬁAQQ‘ﬂﬂlﬁi‘*‘ﬁﬂﬁiAQQOﬂﬁﬁhﬁﬁAﬂﬁiﬁﬁﬁﬁﬁﬁﬁhiﬁﬂﬁi‘ﬁt.ihhﬁh‘ﬁﬂﬁl]ﬁﬁ
;QQQQQAAQQAQﬁhhﬁﬁﬁﬁﬁﬁﬁtﬁﬂﬁﬂﬁﬂﬂl.il‘thﬁﬁﬂﬁihihﬁlﬂﬂﬁﬁﬁﬁh‘iilﬁﬁﬁﬂﬁﬁﬁﬁh*ﬂ

p*arss File "bdry" contains the functions which detect and xecoxd
i***+%+ boundaries between texrasin cells. It also sets and checks
;*4#44 equivalence between optimal-path lists.

:Qtlﬁﬁ

gAs444 Current as of 27 Jun 89

:QQO'Q
;Qﬁnaabﬂnﬁ..tﬁﬁﬁhtlQQQﬁﬁﬁ.lﬁiﬁ.ﬁ‘QﬂQﬁﬁﬁtﬁiﬂﬂﬁﬂﬂ‘ﬁﬁﬁﬁﬁ.‘ﬁtt'hiﬁﬁﬁﬁﬁﬁﬁ.
;h“ﬁﬂﬁﬁh.htthhﬂﬁﬁlﬂﬁ‘ﬂﬂﬁﬁﬂQAAlﬁi.ﬁﬁhAAlﬂhﬁAﬂhi‘hﬁﬁﬁﬁjlthﬁ!.ﬁi‘lﬂﬂ*‘ﬁ

:Pﬂ‘ﬁiﬁﬁﬁﬁQt.ﬁﬁﬁﬂﬂnttﬂhﬁﬁﬁﬁ*ﬂﬁ.ﬁlﬁﬁ..ﬂﬁﬁﬂﬁiﬁﬁit.ﬁ*.ﬁhﬁﬂﬁtﬁh*ﬁﬁﬁtﬁﬁﬁiﬁ
;#*4+% Function "check-all-boundaries” iterates through the whole map
[l A to find boundaries. It is used when boundary-checking is done
p8%%4s  after completion of wavefront expansion.
Pkl el Arguments: None
F Rl led Returned: not applicable
(defun check-all-boundaries ()
{sett *boundary-pixel-list* nil) (linefeed)
{cond
({equal "pure®™ *version*)
(do {(J 1 (1+ J)))
{(string-equal "eof" (aref *mapline* J))
(linefeed) (princ "Finished With Boundary Detection®) (linefeed) (1inefeed))
{(princ "Fure Bdry Detection for Row ") (prini J) (linefeed)
(do ((X 1 (1+ I)))
{{>= X *map-width*))
(cond ((null (arxef #*:ell* (1+ I) J 1)))
({(pure-bdry~condition
I J (1+ 1) J)Y
-(add-to-bdry I J {1+ I} J)))
{(cond {{null (axef *cell* I {1+ J) 1))}
{ (pure~bdry-condition
I J1 (1+ J))
(add-to=-bdry I J I (14 J))))
{cond ((null (aref *cell* (1F I) (1+ J)- 1)))
{ (pure-bdry-condition
IJ (1+ 1) (14 J))
{(add-to=-bdezy I J (14 I) (1+ J)))}))))
((equal "diverging-path® *vexrsion*)
(do ((J 1 (14 J)))
({string~-equal "ezof" (aref *mapline* J))

Check (X,J) against
(1+1,3)

~ we

Check (1,J) against
{X,041)

e %

Check (I,J) -agsinst
(1+41,041)

.

(lincfeed) (princ 'finished With Boundary Detection") (linefeed) (linefeed))

{princ "Diverging-Path. Bdry Detection for ‘Rox ") (prinl J) (linefeed)
{do {(XI 1 (1+ I)))
{({>= I *map-width*))
{cond ((null (aref *celi* (1+ 1) J 1))) ; Check (I,J) aguinst
((diverging-path-bdry-condition. 3 (I+41,3)
0 (14 1) 9)-
{add-~to-bdry I J (14 I) J)))
(cond” ((null (aref “cell* I (1t J) 1})) ; Check (1,J) aguirst
((diverging-path~-bdry-condition- 2 (I, 041)
101 (14 9))
{add=to=bdry 1 J I (1+ O0)})}
(cond ((null (azef *cell* (i+ I) (14 J) 1}))) : Check (1,J) sasinst
((diverging-path~bdxy-condition : 41t4,04))
- TR ) {3F Ui
(add=to-bdey I J (1+ I) (i+ J)IN)))))
((equal "vertex-edge™ *version*)
{do ({01 {1+ 3)))
({string-equal "eof" (aref *mapline* J})
(linefeed) (princ "rinished wWith Boundury Detection")-{linefeed) (linefeed))
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{princ "Vertex-Edge Bdry Detection for Row ") (prinl J) (linefeed)
(do ((X 1 (1+ 1)))
((>= I *map-width?*)) i
{cond ((null (aref *cell* (1+ I) J 1))) ; Check (X,J) against
{(vertex-edge~bdry-condition : (I41,3)
I J (1+1) J0 (list 1 J (14 1) J))
(add-to-bdry I & (1+ I) J})) !
(cond ((null (aref *cell* I {1+ J) 1))) ; Check (1,J) against
( (vertex-edge~bdry-condition : (1,041)
IJI (14 J) 0 (list T J I (14 J))}
(add-to-bdry 1 J I (1+ J))})
{cond ((null (aref *cell* (1t I) (1+ J) 1))) ; Check (I,J) against
((vertex-edge-bdry-condition : (I41,041)
IJ (1+ 1) (14 J) 0 (list T O (1+ 1) (1+ J)))
(add-to~bdxy I J (1+ I) (14+ )M

;Qﬁ'.ﬁ.ﬁﬂﬁﬁﬁ.ﬁﬂ.ﬂt’ﬁﬁktﬁﬁQﬂﬁﬂﬁﬂ.ﬂlkﬁﬂhiﬁhtiiﬁﬁﬁﬁﬂﬂﬂﬁﬁﬁiﬁiﬁ’ﬁﬁt‘hﬂtﬁﬁl

;%%*#4 Function "check-for~boundaries” checks esch of a cell’s four orthogonal
FAd i neighbors for the existence of a region boundary, It is used

;#44%4  yhen boundary-checking is done incrementally during wave expansion.
phraan Arguments: Center-cell,s list of the coords of the cell being

jeanee checked and aux {(local) variables to hold the coords

Fdalal il Returned: not applicable

sastas gide Effects: if bdry exists, the sppropriate pixels arxre added

jreanse to *boundary-pixel-list* and *boundary-bit*(X,Y) is set.
Pl Functions Used: check-neighbor
;ﬁﬂ‘tﬁ
{defun check-for-boundaries (Center-cell
faux X Y)

{setq X (car Center-~cell))

{setq ¥ (cadr Center-cell))

(cond )

{{equal "vertex-edge” *version*) )
{cond ({null (aref *cell* X (1- Y) 1))) Check (X;Y) against (X,Y-1)

If (X,Y-1)’s parent is undefined-

boundary cannot be checked yet,

we “o o

((vertex-edge~bdry-condition ; Else it can so call bdry condition.
XY X (0~ YYD (list X Y X (1- Y¥)))
(sdd-to~bdry X ¥ X (1- ¥Y)}))) : 1f bdry-cond = T, add to bdry=liat.
(cond. {{null (axef *cell* (1~ X) ¥ 1)))
((vertex~edge-bdry-condition : Check (X,Y) against (X-1,Y)

XY (1-X) YO {list XY {1- X) ¥))
(add-to-bdry X Y (1- X) Y}))
(cond {(nuli (axef *cell* X (1+ ¥) 1)))
((vertex-edge-bdry~condition : Check (X,Y) against (X,¥+1)
XY X (14 ¥Y) 0 (list X ¥ X (1+ X)))
{add=to~bdry X Y X (14 ¥))))
(cond ({null {(arxref *cell* (1+ Z) ¥ 1)))
{ (vertex-edge~bdry-condition ; Check (X,Y) against (X+1,Y)
YY (1 X) YO (list X ¥ (1+ X) ¥Y))
(add~to-bdry X Y (14 X) ¥))))
{(equal “pure" *version*)
(coad ((null {(aref *cell* ¥ (1- Y) 1))) Check (X,¥) agzinst (X,Y-1%
1f (%,¥-1)'s parent is undzfined

e e

: boundary cannot be checked yet,
{(pure-bdry~-condition ; Elae it can so call bdry condition,
TR UI-F)
(add=to=bdry X Y % (1- Y)})) ; If bdry-cond = T, add to bdry~list.
(cond ((null -(aref *cell* {1~ X) Y 1)))
{(pure-bdry-condition : Check (X,Y) against (¥-1,Y)

Y (1= %) Y)
(add=Lo=~bidsy X ¥ (i %) ¥)))
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{cond ({(null (aref *cell* X (1+ ¥) 1)))
{ (pure~bdry~condition : Check (X,Y} against (X,Y+1)
XY X (14 Y))
(add~to-bdry X ¥ X (14 Y))))
{cond ((null (aref *cell* (1+ X) Y 1)))
{ (pure-bdry~-condition : Check (X,Y) against (X+1,Y)
XY (14 X) Y)
(add-to-bdry X Y (1+ X) Y))))
({equal "diverging-path" *version*)
(cond ((null (aref *cell* X (1- Y) 1))) Check (X,Y) against (X,¥Y-1)
If {(X,Y-1)'’s parent is undefined
boundary cannot be checked yet,

~o %o we

{ (diverging-path-bdry-condition : Else it can so call. bdry condition.
X ¥YX (1-Y))
{add-to~bdry X Y X (1~ Y)))) ; If bdry-cond = T, add to bdry-list.
(cond ((null (arxef *cell* (1- X) Y 1))) ’
{ (diverging-path-bdry-condition ; Check (X,Y) againct (X-1,Y)

XY (1- X} ¥)
(add-to-bdry X Y (1~ X) Y)))
{cond ((null (aref *cell* X (1+ Y) 1)))
((divexging-path-bdry~condition : Check (X,Y) against (X,Y+1)
XY X (1+ Y1) )
(add-to-bdry X Y X (1+ Y))))
{cond (({null (axef *cell* (1+ X) Y 1)))
((diverging-path~-bdry-condition ; Check (X,¥) against (X+1,Y)
XY (1+4 X) ¥)
(add-to-bdxry X Y (1+ X) Y))))))

'-ﬂuaﬂufﬁhﬁﬁhﬂhﬁnAﬁkﬁhﬂhhiﬂﬁﬁhﬁtQhkhhﬁﬂthh.hﬁ’ﬁﬂhhﬁﬁﬁhﬁﬁﬁhiﬁﬁtﬂhtﬁﬁhﬂh

j#**+4 Fynction "vertex-edge-bdry-~condition® checks if -thexe is a boundary
;****+ between two cells hy seeing if their OPL’s have: equivalent “critical”
;%%44¢ points, where a critical point is a turn-cell which is on an edge
;*#**4r or is adjacent to a terrain-feature vertex.

$#a4s Arguments: Coords of 2 cells which may be in different regions;

AL LA Flag which is 0 normally, but for double-edged cells on the

phaaas second recursive call with that cell is a list of the Jeft~over edge-id,
EXXEY and for edge-interior pairs is 1 or (edge-id) after initiai call.
;##*++  peturned: nil if condition does not hold, and T

AL if condition does hold.

jhr*4s gide Effects: none

ehAhAS
(defun vertex-edge-bdry-condition (X1 Y1 X2 Y2 Flag StartPoints)
(let* ((Xsl (first StartPoints)) : bdry cond based on vertex
{Ysl (second StartPoints)) ; and -edge turn points.
{Xs2 (third StartFoints))
(Ys2 (fourth StartPoints)) .
(Parentl (first-distinguished-opl-cell X1 Y1 Xsl Ysl))
(Parent2 (first-distinguished-opl-cell X2 Y2 Xs2 Ys32))
iXpl (first Parentl))
(Ypl (second Farentl))
(Xp2 (first Farent2))
{Yp2 (s=cond Parent2))?}
(cond

{(not {(equal ; Case A: If the start-pts themselves have
(first (aref *cell” Xs1l Ysl 2)) ; different costs, they are in different
Aficst (Aref *cellt Ma2-¥=2 23}y 7 reglons. Tiils condition fires only

't) ; on che 1st call to v-e~b-c.

((and ; Case 1' If SFl is edge- (& §F2 13 inside same
(<1 (length {aref *cell* Xsl Ysl 2))) : rgn, by A above) and Farent of 2
(erqqual : is on the same edye as Sfl, and

{aecond (aref “‘cell* Xsl Yal 2)) : SP1 is not the lst of a pair _f
{third Farent2)) ; double-edge cells, do not put a
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(not (equal

(second (aref *cell* Xsl ¥Ysl 2))

(third Parentl))))
nil)
((and H

(< 1 (length (aref *cell* Xs2 Ys2 2)))

{equal

(second (aref *cell* Xs2 ¥s2 2))

(third Parentl))
{(not (equal

: bdry between SP1 & SP2.
s (This case makes edge cells &
; inr‘erior cells be in same xgn.)

Case B2: If SP2 is edge (¢ SF1 ia inside same

rgn, by A above) and Pareut of 1
is on the same edge as SF2, and
SP2 is not the 1st of a pair of
double-edge cells, do not put a
bdry between SF1 & Sr2.

Ne S S Sp e e e

(second (aref *cellr Xs2 Ys2 2)) (This case makes edge cells &
(thixd Parent2)))) interior cells be in same xgn.)
nil)
({and (= Xpl Xp2) ; Case C: If Farentl & Parent2 are the same,

(= Ypl Yp2)) nil)
{((and (= 3 (length Farentl))
(= 3 (length Parent2))) ;
(cond
((set-equal (third Parentl)
{third Parent2))
(vertex-edge-bdry-condition

((and
(subsetp (third Farent2)
(third Paxentl))
(not (listp Flag))}
{vertex-edge-bdry-zondition
X1 Y1 Xp2 Yp2
{set-diffexrence
{third Parentl)
(thicd Parent2))
StartPoints))
({and
{subsetp (third Parentl)
{third Parent2j)
(not (listp Flag)))
{veriex-edge~-bdry~-condition
Xpl ¥Ypl X2 ¥2
(set~difference
{thizd Pazxent?2)
(third Parentl))
StartPoints))
{{and
{(subsetp (third Parent2)
(third Parentl))
{equal Flag
(third Parent2)))
(vertex-edge-bdry~-condition

{(and
{subsetp (third Farentl)
{thixd Parent2))
-(equal Flag
(third Parentl)))
(vertex-~edge-bdry-condition.

.
’

Ptl & Pt2 are in same rec’on.

Case D: If pareiats are both edge cells:

.
’

Xpl Ypl Xp2 ¥p2 O Star

’

~

-

Xpl Ypl Xp2 ¥p2 0 StartfFo

’

Case D1:

»
’

.
’

1f edge-id lists are the same,
chk next pair of cells on OPL recursively
(Noxmal case)

tPoints))
Case D2:

we %o “e <4 Wp %y Ne W

Else if Parentl is a double-edye cell and
one of its edge-ids =~ edge-id of Parent2,
and this is the 1lst time Parentl has been
checked in this set of calls to v-e-b-c
recursively check OPL with Fointl and
Yarent2, with flag :~ (unmatched-edge=~id)
of Farentl, (Only applies whexe cell 1 is
is on two edges.)

Case D3;

e Ne Ve e Ne Ve Ve

Else if Parent2 is. a double-edge cell and
one of its edge-ids = edge-id of Parentl,
and this is the lst time Parent2 has been
checked in this set of calls to
v-e-bdry-cond, recursively check OPL with
Parentl and Point2, with flag :»
(unmat.ched-edge-id) of Parent2.

Case D2, Second Pass:

.
’
N
‘
»
1
3
’

.
’
.
’
.
’
.
’

Else if Parentl is a double-adge cell
its previously unmatched edge-id « id
Farent2, recursively check OFL from
Parentl & Parent2, with Flag = NIL,

and
of

ints))
Case D3, Second Fass:

Else if Farent?2 is a double-edge cell
and previously unmatched edge-id ~ id
Parentl, recursively check OFL from

Parentl and Parent2, with Flag = NIL.

and
of

Ypl Ypl Xp2 ¥p2 0 StartPoints))

(t 't)))
(t "t))))

N
v

Qa-

; C

-~
frdelod

ase D4: Otherwise pts are in different rgns

Po - ATIHONIID N
1 1

: "CTHERWISE pis dxe in different rgna,

}00“0&0‘0"”0.‘009bb.‘..QDd‘0‘Q’,OQ)00tl0D.’ﬁﬁﬁﬁfﬁ0‘0.".0."0’#"‘

;#4¢*+ Function "first-distinguished-opl-cell® finds the first cell on
the opl of Ft X,Y which is a "distinguished” point. It is caller
by tunction "heuristic-bdry-condition”

X2 X XN
’

XXX RN
’
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;4%%+¢  Arguments: coords of the cell whose opl is being checked
gharAA Returned: a list of the coordinates of the distinguished- cell,
prRRAn followed if it is an edge cell by the edge id num.

;#**4% Side effects: none
(defun first-distinguished-cpl-cell (X Y Xs Ys
&aux Dcell)
{cond ((equalp
{list X Y)
. (aref *c2ll* X Y 3)) (list X Y))
({setf Dcell (distinguished-cell
(first (aref *cell* X Y 3))
/ {second (aref *cell* X Y 3)))}
{cond
((= 3 (length Dcell)) Dcell)
({not (equal
(first (aref *cell* Xs Ys 2))
(first (aref *cell*
(first Dcell)
(second Dcell)

We s ve Vo Ve %

~e %o Vo W

1f opl-parent=point, cell is obstacle
or goal, so return the point itself.
(base case 2}
If opl-parent is distinguished, rtn
coords of parent and possibly the
edge id number.

(base case 23)

If :icell is edge cell, rtn Dcell.
1£f Dcell is vertex and this path
started outside the texrain feature
of which Dcell is a vtx, rtn Dcell.

2))))
Dcell)
{t (first-distinguished-ocpl-cell ; Else, recurse to look
{first (aref *cell* X Y 3)) ; at next cell on opl.

(second (aref *cell* X Y 3))
Xs Ys))))
(t (first-distinguished-opl-cell

‘£lse, recurse to look

(first (aref *cell* X Y 3)) ; at next cell on opl.

{second (aref *cell* X' Y 3))
Xs ¥s))))

:.0Q‘QQQOQQQQQQQQQQQQQQQQQAAﬁtkh!ﬁﬁﬂhi.i&ﬁ.hnﬁ..ﬁfﬁﬁ&Ahﬁiﬂﬁﬁﬂ,’-ﬁﬁﬁﬂhit
;**4++ Function "distinguished-cell” determines whether cell is an-edge

Hi R or adjacent to & terrain-feature vertex.

;ersrs  Arguments: coords of the -cell being cliecked for disting. status

o At Returned: (X% Y edge-id-list) if cell is on an edge
perere (X ¥) if cell 3is adjacent to a vertex
Pl nil if cell is sot distinguished
phanie Side effects: none

. (defun distinguished-cell (X Y)

{let {(X- (1~ X})
(x+ (14 X))
(¥~ (1~ Y¥))
(Y+ (1+ ¥)))
{cond
({and (< 1 (length (aref *cell* X Y 2)})
{equal
(second (aref *cell* X Y 2))
(second
{aref *cell*
(first (aref *cell* X Y 1)}
(s=cond (aref *cell* X Y 1))
2)))) nil)
((< 1 (length (aref *cell* X Y 2))})
(list X Y (second (aref *cell* X Y 2))))
((and (= 3 (length (aref #*cell* ¥%- Y 2)))
{not (equalp (first (aref *cell* X Y 2))
{firat (aref *cell* X- ¥ 2)))))

“e we s we

~

.
.
.
H

return

- (list %X- Y))
- dland. (= - flapngth faref Analls Z- Vi 441 -
(not (equalp (first {aref *cell* ¥ ¥ 2)}
(tirst (aref *cell* X- Y+ 2)))))
(Jist Y= Yij}
-« ((and {= 3 -{length (aref *cell® X Y- 2)))
{not (equalp (first f{aref ‘cell* X Y 2})
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If (X,Y) is edge cell
and is the first of a
pair of adjacent cells
of the same edge in the
same backpath,

return nil.

If (X,Y) js a single edge ccll,

coords & edge-id-list.

Else if (X,Y) i»
adjacent to a vertex
and is outside the

xtc:a-l n-fsature ot

adait AaVaevlace

uhich the vertex is
a part, return coords
of vertex.




{list X Y-))
({and (= 3 (length
{not {(equalp

{list X- ¥Y-))
{{and (= 3 (length
{(not (equalp

(list X Y+4)}
((and {= 3 (length
{niot (squalp

{list X+ Y-))
({and (= 3 {(length
(not (equalp

(list X+ Y))
{{(and (= 3 (length
(not (equalp

(first (arxef

(aref *cell*
(first (aref
(first (aref

(aref *cell*
(firsl: (aref
(first (aref

(aref *cell*
(firot (aref
(first (axef

{(aref *cell#
(first (aref
(first (aref

{(aref *cellr
{first (vref
(first (aref

Acell® X Y- 2)))))

X= Y- 2)))
*cell* X Y 2))
tcell* X~ ¥~ 2)))))

X ¥+ 2)))
*cell* X Y 2))
Acell* X Y+ 2)))))

X+ Y- 2)))
Acell* X Y 2))
rAcell* X+ Y- 2)))))

X+ Y 2)))
*cell* X Y 2))
*cell* X+ X 2)))))

X+ Y+ 2)))
*fcell* X Y 2))
*cell* X+ Y+ 2)))))

(list ¥+ Y4))
tt nid))n : Else (X,Y) is not adjacent to a vertex

and is not an edge cell

:hhlhhlﬁﬂﬁﬁﬂﬁhh.ﬂ*hhﬁﬁﬁ*ﬁﬁhﬁﬂﬂktﬁhﬁﬁtﬁﬁﬁﬁﬁﬂﬁ.ﬂﬁﬁﬁﬁﬁﬂﬂﬁﬂﬂﬁﬁﬂ"ﬁﬁ.ﬁﬁﬁﬁﬁﬂ

;#%ar+ Function "add-to-bdry” sets the boundary bit to 1 and
;***#*  adds boundary pixeis to the front of the boundary List

Pkl unless one of the arguments is an obstacle cell.
;#4444 Arxgument: cvoords of two points whose boundary
Pl is to be added.

PR Returied: always returns T

sessrs Side effects: Sets *houndary* bit to 1 and

PR =ets *boundary-pixel-list* to the previous
il list with the new pixels appended to the front.
shARAAD

(defun add-to-bdry (X1 Y1 X2 ¥2
&aux Xa Xb Ya Yb)
{cond

({or (char~egual
{char-equal

f\x {car (aref *cell* X1 Y1 2)))
f\x (car (aref *cell* X2 Y2 2})))’'t)
{t
(setq Xa
(setq Ya

{(+ X1
(+ Y1

(/ {- X2 X1) *magnification*)})
(/ (- 2 Y1) *magnification?)))
{setqg Xb (+ X1 (* 2 (/ (-~ X2 X1) *magnification*))))
(setg Yb (+ Y1 (* 2 (/ (-~ Y2 Y1) *magnification*))))
(setf -{(bit *boundary*
{min X1 ¥2) H
{min Y1 Y2} H
{cond ((~ O (- ¥1 ¥Y2)) 0)
(t 1)))

Set the boundary
flag bit of the upper
or leftmost cell.

1)
*boundary-pixel-list#
(append
{mapcar ‘magnify-pixel
{cond
({= X1 %2)
(list (list (- X1 (/ 1 *magnification*)) Ya)
(1ist Y1 Ya)
(list (+ X1 (/ 1 *mognification*)) Ya)
(Jist (~ X1 (/ 1 *magnification®)) Y¥b)
(List X1 Yb)

(setf
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(list (+ X2 (/ 1 *magnification*)) ¥b)))

((= Y1 Y2)

(list (list Xa (~ Y1 (/ 1 *magnification*)))

(list X2 Y1

)

(list Xa (+ Y1 (/ 1 *magnification*}))
(list Xb {- Y1 (/ 1 *magnification?)))

{list Xb ¥l

)

(list Xb (+ Y1 (/ 1 *magnification®))))) "

(t
(list (list Xa Ya)
(list Xa ¥Yb)
{list Xb Ya)
{list Xb ¥Yb)})))
*boundary-pixel-list*)) ’t)})

'-QQQ.Q.QQQQQ.QQ..&QQQQﬂQ#QOO0&'ﬁ.ﬂ.Qﬁ'ﬁﬂQﬁﬁﬁﬁﬂﬂiﬂﬁ.tﬂ**ﬁtﬁ‘iﬁ'ﬁ.t.ﬂﬂﬁ
s*#+*+ runction "set-opl” sets the coozds for = cell’s predecessor

:QQ...
IX 2 XXX
I
XX R X
I3
ehAMSA
’
sARANA
’
X X2 XX
H

shPatdd
H

in the optimal-path-list.

Arguments: Xn and Yn the coords of the new cell with OPL being
set and Xp and Yp the cooxrds of (Xn,¥n)’s parent on backpath

Returned: not applicable

Side Effects: sets *ceil*(Xn,¥n,3) with n’s predecessor on CPL

Functions Used: on-line-between

(defun set-opl (Xn Yn Xp ¥p)
(cond ((< 1 (length (aref *cell* Xp Yp 2)))

(setf (aref *cell* Xn ¥Yn 3) (list Xp Yp)
({on-1line-between Xp Yp Xn ¥n

(first (aref *cell* Xp Yp 3))
(second (aref *cell* Xp Yp 3)))
(setf (aref *cell” Xn Yn 3) (aref *cell* Xp Yp 3)
(t (3etf (aref “cell* Xn ¥Yn 3) (list Xp ¥p)))))

)

: 1£ P is an edge cell, set
; pred of N to P.

If P is between N

¢ pred of P on OPL,
st pred of N to

) ; pred of P.
Else set pred of N
to P itself.

~

we W s v vy

'-0OQ00lQﬂﬁﬁp‘tnb&d00ﬁAﬁ.0Iﬂﬁ..ﬁ‘ﬂﬂﬁﬂlﬂﬁ.ﬂiﬁi.ﬂ.h‘ﬁﬁﬁhﬁhﬂh.ﬂ‘iﬂ..ﬂ.ﬂhﬂ
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- shhass
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cto0op

L4

s hbahb

’

IR EEER ]

L4

chh bbb

H

{defun
(let*

Function “"pure-bdry-condition®

hArguments: Coords of 2 cells which may be in different regions

Returned: nil if condition does not hold,
if condition does hold.

Side Effects: none

pure~bdry-condition (X! 71 X2 ¥2) H

({(%pl (car (aref *cell* %1 Y1 3)))
(Ypl (cadr (aref *cell* X1 Y1 3)})
(¥p2 (car (aref *cell* X2 Y2 3)))
{Yp2 (cadr (aref “cell* X2 Y2 3)))
{(Yppl (car {(atref *cell* Xpl ¥Ypl 3)})
(Yppl (cadr {aref *cell* Xpl Ypl 3)))
(Xpp2 {car (aref *cell* Xp2 Yp2 3)))
{(Ypp2 (cadr (aref *cell* Xp2 ¥Yp2 3))))

(cond ((and (= Xpl Xp2)

{= ¥Ypl ¥Yp2)) nil)

. e

({on-line~incl-between

%pl ¥pl Yp2 Yp2 Ypp2 Ypp2) nil)
({(on-line-incl-between

¥p2 ¥p2 Xpl Y¥el Yppl ¥ppl) nild)
{({(on-line-incl-between

Ypl Ypl %2 ¥2 ¥p2 ¥p2) nil)
({on-line-inzl-between

Yp2 ¥Yp2 X1 Y1 ¥pl ¥Ypl) nil)
(t (add-to=-bdry X1 Y1 X2 ¥2)))))
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and

T

"Pure” boundary condition:

e e Se we wp we v

If OFLs are equivalent,
return nil, else return T

OFLs ure equivalent if
first cells in each
OFL are equivalent, ie,
if they are the same,
or Lf one is in the
first leg of the

OP1, of the other




;OnﬂﬁAﬁ0ﬁﬂbQﬁ‘ﬂhﬁﬂ‘ﬁﬂﬁﬁﬁﬁﬁiiﬂﬂtﬁkﬁﬁﬁtﬂklih**ﬁﬁiﬂ‘.A‘ﬁﬁﬁ*ﬁtttﬁﬂ.ﬁlﬂﬁhﬂ

sas4as Function "diverging-path-bdry-condition®
s%%%44 Arguments: Coords of 2 cells vhich may be in different regions
;#+#4++ Returned: nil if condition does not hold, and T
phERAL if condition does hold.
jassss Side Effects: none
:QQQQQ
(defun diverging-path-bdry-condition (Xc ¥Yc Xn ¥n
gaux PC PXc PYc PPc PPXc PFYc PPPC PPrXc PPPYc PN PXn PYn PPn PPXn PPYn PFPN PPPXn PEPYn
(setq PC (aref *cell* Xc Yc 1))
(setg PN (aref *cell* Xn ¥n 1))
{setq PXc (first FC))
(setq PYc (second PC))
(setf PPC (arvf *cell* PXc P¥Yc 1))
{setq PPYc (tirst PPC))
(sety PPY¥c (second FPC))
(setf PPPC (aref *cell* FPYc FEYc 1))
(setq PPPXc (first FPPC))
(setg PPPYc (second PFPC))
{setqg FXn (first FN))
(setq PYn (s=cond PV))
(setf PPN (aref *cell* PXn F¥n 1))
(setq PFXn (first FPEN))
(setg PPYn (second PPN))
(setf PPFN (aref *cell* PPXn PPYn 1))
{setq PPPXp (first PPPN))
(setq PPFYn (second PPPN))
{cond ((and (= Xn PXn) (= ¥Yn F¥n))) ; Keeps obst from causing bdry.
({(bdry-condition-1 I1f greatgp’s are separated
PPPXc PPPYc PPPXn PPPYn) by more than two, cells are
(add-to~bdry Xc Yc Xn ¥n)) in different regions.
{{bdry~-condition-2 1f cell and neighbor’s
Xc Yc PXn P¥n) parent are in different
(add-to-bdry Xc Yc Xn ¥Yn}) regions, so are cells.
((bdry-condition-2 If parents are in
PXc PYc PXn PY¥n) different regions,
{add-to-bdry Xc Yc Xn Yn)) S0 are cells,
{(bdry~condition-3 if gp’s are separated by an
PPXc PPYc PPXn PPYn) obst or river cell, there
(add-to~bdry Xc ¥c Xn “n}) is a bdry btwn cells.
{t nil)))

Find Center-cell’s
parent, grandparent, and
great-grandparent

we v v

Find Neighbor-cell’s
parent, grandpa:ent, and
great-grandparent

~e wy v

e we v
Ny e N
~e we W

.. e we

:000OOOOQQQQOQQOODOOOQA’QQQQtQQOQQh.iOOQQt‘.tﬂﬁ.tﬂ.i......ﬁﬁﬂ'ﬁﬁﬁﬁﬂ.ﬁ
;#%444 Function "bdry-condition-1"

;#4444 Arguments: Coords of 2 cells which may be in different regions
;#enss  peturned: nil if condition does not hold, and T

P Al if condition does hold.
;#+4++ Side Effects: none
H [ XXX
{(defun bdry~condition-1 (X1 Y1 X2 Y2)
(cond : Boundary condition 1:
({or (< 2 (aba (- X1 X2)}) : 1f cells are more than 2 cells
(< 2 (abs (~ Y1 ¥2))))) ; uspart, return “trne®
(t nil)))

:7‘,‘.000.,0...“‘00.60000‘..Ab‘.““haho-.b&"cb&oo‘a—:--...—-*- 2

................ SEFRIFRES
;¢%%4¢ runction "bdry-condition-2"

;4%%%+ Arguments: Coords of 2 cells which may be in Jdifferent regions
;#*+4+ Returned: nil if condition does not hold, and T if

i condition doss hold.

3%4¢**+ Side Effects: none

;0‘00‘

{defun bdry-condition-2 (¥1 Y1 X2 ¥2)
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{cond
{(and
(= 1 (+ (abs (~ X1 X2))
(abs (- Y1 ¥2))))
(not (equal (list X1 Y1)

{aref *cell* X2 v2 1))) ;

{not (equal (list x2 Y2)

! Boundary condition 2:
; If cells are adjacent,

and one is not the
parent of the other,

(aref *cell* X1 Y1 1)))

{= 1 (bit *boundary*
{min X1 x2)
(min Y1 Y2)
(cond ((= 0 (~

¢ and bdry bit is set,

Y1 ¥2)) 0)

1NN

L)
(t nil}))

; then return "“truye”
; else returp "nil"

’-Qi.QtﬁﬁﬁlﬁAﬁﬁﬁﬂ.ﬁblhiﬁlﬁﬂtﬁhﬂﬂkﬂihﬁ*khhﬂhﬁi.ht*ﬂhi‘*ﬁﬁ**ﬁﬂﬂ}ﬁﬁﬁtﬂ*ﬁﬁ

A4 L2 2]
IR A AT dd
IR E s Xy
’-.Q..i
JTRARAN
shANAN
’
XX XYY
’
2P AREN
H
T ET T
’
cAADAN
’
AR NN
’
swhAhA
’

shbbhp
’

(defun

Function "bdry-condition-3"
by exactly one obstacle or rive
circumstances in which cond-3 w
different regions.

Arguments: Coorda of 2 cells wh
Returned: nil if condition does

if condition does hold.

Side Effects: none

NOTE: nested cond’s are arrange
as possible when the condition
must be run 4 times for every
will the =2,=0 conditions be t

bdry-condition~3 {Xi y1 %2 ¥2)
{cond
((and {= 2 {sha (~ X1 X231
(= & (-~ %2 Y2} ))
{cond
{{oxr {(char~equal ¥\x (aref
{chaz~equal #\zr lacgef
fLyYi
{iend (= 0 (-~ X2 X2}1)
i= 2 {2bs {~ ¥1 Y2)))3

teond
{{or {char~equal #\x (azef
{char-aqual #\r (aref
"£))})
(€ niljy))

checks if points are separated

r cell. If so, under the
ill be called, they are in

ich may be in different regions
not hold, and T

d as they are to detect us soon

s vill not hold, because Lhis test
cell in the map, and only occasionally
rue,

If cells are 2 apart horizontally,
and 0 apart vertically, and

if cell between them is an obstacle
or river, their children are in

¢ different regions.

Agellr (7 (+ x2 X2) 2) Y1 2))

*cell* {7 {: .

. e Sy e Wy

i Same as shove for 2 apart vertically
; and' 0 spart horizontally.

feell* X1 (/ (+ X1 ¥2) 2) 2))
‘cell* X1 {/ (+ Y1 ¥2) 2) 2)))




::: =*= Mode: LISP; Syntax: Commos:~Lisp; Package: USER —-*-

:QhﬁﬁhlﬂAhilﬁﬁitiﬁfnﬂ*hﬁﬁﬁﬁﬁhiﬁktAAﬁAﬁhhﬂlﬁﬁ.‘kt‘ﬁﬁtﬁﬁhtﬁﬁi*htk.ﬁ‘ﬁﬁl
:iﬁﬁ.Qﬂ.ﬂﬂﬁﬁ‘tﬂﬂﬁﬂ.iﬁﬁﬁﬁiﬁitﬁﬁﬂiknhﬂﬁﬁ.tiﬁt’t*ﬂﬁﬁ.tﬁiii.ﬁttﬁﬂﬁ.ﬁﬁﬁﬁih
ghhark muriles.lisp" contains several utility functions used by "opm"
s#rrrr found in file "opm.licp” and x 'lated functions.

:ﬁﬁﬂﬁl

;A*%4% Current as of 7 Jun 89

;Qﬁﬂﬁﬁ
'-ﬁﬂi*ﬁ*ﬁtﬁﬂt’ﬁ**hh*ﬁ-\v\hAﬂﬁﬁk)\h:ﬂf'ﬁihﬁﬁhﬁtl«hAﬁﬁittﬁhhﬂtaiha**ﬁ‘*ﬁﬁﬁﬁ*i
;Qhﬁﬂﬁﬁﬂﬂﬁhﬁﬁﬁﬂk’tﬁﬂﬁiﬁﬁQQAhﬁitﬂh‘ﬂh*tiﬂhﬁﬁﬂﬂﬁﬁ*ttﬂ*ﬁﬂﬁtﬁﬁtﬁﬁﬁ*ﬁ.ﬂ*ﬂﬁ

;.ﬂﬁﬁﬁ’hﬁﬂiﬁﬁﬁﬁﬁﬂﬁlﬁﬁtﬁkﬁﬁhlﬁiﬁﬁh}.ﬁﬁ!Alﬁﬂﬁ.QQAﬁlﬁhlﬂﬁiltﬁﬂ**ﬁ:ikt’*ﬁ
s4*+2+ Function "on-line-incl-betwsen" dztexmines whether the first point
gARARA is between the second and third, inclusive.
pheers Arguments: X & ¥, X1 & Y1, X2 & Y2, ccords of three pointy
Fh Returned; non-nil if (X,Y) is strictly btwn (X1,¥1) & (X2,¥2),
Pl b ot nil otherwise.
Pl Side Ef{fects: none
(defun on-lins~incl-between (X Y X1 Y1 X2 Y2)
{cond ((and (= X X1) (= ¥ ¥1))) If (X,Y) = (X1,Y1l) or
({and (= X X2) (= Y ¥2))) (X,¥) = (%2,¥2), return T
fland (or (< X1 ¥ X2) If (X,Y) is strictly

{> X1 X X2))

for (< ¥1 Y Y2)
(> Y1 Y ¥2))

(= (/ (-1 ¥1)

inside the recL.angle
formed by the line
endpoints, check by
comnparing slopes whether

Ny Se S Ve Ve my we S

(- X% X1))
(/ (- ¥ ¥2)
(- X X2})))))
{{and (= X X1 X2)
{or (< ¥1 ¥ ¥2)
(> Y1 Y ¥2))))
((and (= Y ¥1 Y2)
{or (< X1 X X2)
{> X1 X X2))))
{t nil))) ;s Else return NIL

point is on line.

If line is vertical, check by
comparing ¥ coordinates.

. we

If line is horizontal, check hy
comparing X coordinates.

~. “e

;QQD’pﬁl.ﬁ’ﬁ&ﬁﬁﬁﬂﬂiﬁﬂﬁAQﬁﬁﬁhﬁhﬁ*ﬂhﬂk*ﬁﬁﬁﬁﬁlﬁshkﬁﬁﬁﬂkﬁﬂﬁﬁﬁiﬂﬁﬁﬂﬂﬂ.ﬁﬁﬁﬁ
;%444 Fupction "on-line-between" determines whether the first point
phesEs is strictly between the second and- third.

;**%44  Argumenta: X & ¥, X1 & Y1, X2 & Y2, coords of three points
Haddh Returned: non-pil if (X,Y) is strictly btwn (X1,Y1) & (X2,Y2),

Hi A or nil otherwise.
grases Side Effecta: none

(defun on-line-between (X Y X1 Y1 X2 Y2)

{cond {{and (or (< X1 X X2)
{> X1 X x2))
{or (< Y1 Y ¥2)
(> Y1 Y Y2))
e (/ (- Y Y1)
(- % X1))
(/ (- ¥ ¥2)
(= % x2)))))
(fand (= X X1 ¥X2)
for (< Y] ¥ ¥2)
> Y1 Y Y2)1)))
{{and (v Y Y1 ¥2)
(or (< X1 X %2)
(> %1 X X2))))
(t nil)))

If (X,¥) 33 strictly
inside the rectangle
formed by the line
endpoints, check by
comparing slopes whether
point is on line.

. we %o me e

~e

1f line is vertical, check by
comparing Y coordinates.

. we

I1£€ line is horizontal, check by
comparing X coordinates.

- W

; EBlse return NIL

:0!0ibboiﬁl!D"OQQ’QO&QOA..G}QOAQh.ﬂ‘ﬁﬁﬂ.Oioﬁphﬁﬁbﬁﬁthﬁﬁ.q&ﬁo‘o‘.»’ﬂt
24**** Function “magnify-pixel” takes s pair of pixel coordinatep
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R LLEL] and returns coordinates which are k times magnified.
Pl Argument: Pixel, a list of two numbers, and K, the magnification.
Rl LA Returned: a list of two numbers, each number
shhans being XK times the original.
FRRARA Side Effects: none
(defun magnify-pixel (Pixel)

{1ist (* *magnification* (firsc Fixel})

(* *magnification* (second Pixel))))

;Qﬁ.QﬁQﬁ‘lﬂﬁﬂQﬁiﬁi’ﬁhﬁﬁ.ﬁ‘Qﬁﬁﬁﬁﬁﬁﬂﬁﬁﬂﬁﬁﬁﬁﬁﬁﬁﬁhﬁ.'ﬂ’hﬁﬁ.ﬂﬁ*.ﬂﬁﬁﬁﬂﬂ.iﬁﬂ
;***r% runctic: "magnify-pixel-list® takes a list of pixel coordinates
;#t42a  and returns a list which is k times magnified.

jasass prgument: Pixel-list, a list of lists of two numbers cach,

bbbl and K, the magnification.
FRRAAR Returned: & list of lists of two numhers, each number
b being K times the original.

shhans Side Effects: none
{defun magnify-pixel-list (Pixel-list)
{cond ((null Pixel-list) nil)
(t (cons (list (* *magnification* (first (first Pixel-list)))
(* *magnification* (gsecond (first Pixel-liat))))
(magnify-pixel-list (reat Pixel-list)))}))

;00Qhﬁlﬂﬁ..ﬂﬁtﬁﬂiﬁﬂﬂ.hﬁﬁhﬁhQﬂﬁﬂh.ﬂanﬁﬁtﬁéhﬂRﬁ.iﬂﬁﬂhﬂh!ﬁt.ﬁtﬁﬁh‘.iﬁ‘Aﬂ
;***%4 Function get-backpath finds a cell’s parent, and gives the
;**%2% pixels from the cell to the parent, including the cell.
;**444 This version only works for *magnif* = 2 or 3
$***4  Argument: X & Y, coords of cell whose backpath 13 requiced
;22444 peturned: a list of pix=l coords
s*rses Side Effects: none
;QQ.‘.
{defun get~backpath (X Y
tauxz Parent-cell ¥m Ym Xp ¥Yp)
{cond {(null (aref *cell* X Y 1)) nil)
{t

isetq Parent-cell (magnify-pixel (sref *cell* X Y 1)))

(setyg Xp (first Parent-cell))

{setqg Yp (second Parent-cell})

\setq Xm (* *magnification* X))

{setq ¥m (* *magnification* Y))

(list (list Xm ¥Ym)

(list (+ Xm {/ (- Xp Xm) “magnification*))
(# im (/ (- Yp ¥Ym) *magnification*)))
{list {+ Xm (* 2 (/ (-~ Xp Xm) *magnification®)))
{(+ ¥m (* 2 (/ (- Yp Ym) *magnification*))))))))

JRRARAMAAAAGAMRARAAADAAARAANAARAARRAARARAARRAARRAAAARAARAARMRARASRALARAAAAAAR

i%h+0+ Function get-all-backpaths finds the backpaths from every cell
;*4%44  on the map and puts them in pixel forxm into *backpath-pixel-list*
{defun get-ull~backpaths ()
(sctg *backpath-pixel-list* nil)
(do ({J 1 (1+ 3)))
((stxing-equal "eof" (aref *mapline* J)) *backpath-pixel-list*)
{do ((X 1 (1+ )))
{i= {length (aref *maplins*® 1)) I))
{sztq *backpath-pixel-t: -
{aprend
(get~backpath 1 )
*backpath-pixel-1ist*)}}))

:’QQ.QQOﬁﬁﬁiQﬁﬂﬁﬁlhﬁﬁﬁﬁﬁiﬂﬁﬁ’khﬂﬁiiQﬁQ‘AItﬁQQ.lhﬁﬁﬁhh*hﬁﬁhﬂﬂ.ﬁ.ﬁﬂh.ﬁﬂ

;#4424 Function set-equal checks if two sety are the same.
AAaas Argumenta: Setl and Set2, twe lists treated as sets.
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;a##ar peturned: T if Setl and Set2 are the same, disregarding
IR repeated elements, NIL othezwise.
(defun set-egqual {Setl Set2)
{cond ((and {subsetp 3=tl Set2)
{subsetp Set2 Setl)})
{t nil)})

:0lhttl.QQO.Q]Qﬂt.‘ﬁ.iifﬂ.'.....ﬁﬁﬁﬁﬂﬂ.h‘t.tiﬁhﬁ)ﬁ.ﬂﬁt‘ﬁ.ﬁﬁﬂnﬁ.ﬂlﬁﬁl.
shertd rynction print-opl is a debugging function to print -the OPL
JarsaL of a cell to the screen.
{defun print-opl (X Y}
{cond ({equal *goal* (list X ¥)})
{t (pxint (axef *cell* X ¥ 3))
{prinl (axef fcell*
(first (aref *cellt* X Y 3))
{zecond {axef *cell* X Y 3))
2))
(print-opl (first (axef *celi* X ¥ 3))
{second (arxef #*cellr X Y 3))))))

:Qttiﬁhiiﬂilnﬁﬁ.*kﬁ*ﬁiﬁQﬁﬁiQLQQtiihi.hihttﬁﬂ*ﬁﬁhﬁﬁﬁuhiﬁﬁﬁhtﬂﬁﬁ*hﬁﬂﬁﬁi

;#4444 Pynction "linefeed"® is a nemonic for texpri.
s*eers gide Cffects: causes a carriage return to be sent to

hheen the output stream.
{(defun linefeed ()
{tecpri))

(defun linefeed2 (}
{terpri *output-strxeam*))

;.QﬂQlﬂhtﬁdtﬁhﬁﬂt..ﬁﬁﬂtlﬁﬁnhﬁ.ﬁiitiitkﬁ.h..iﬁﬁ?.ﬁ.ktﬁﬁhﬁﬁﬂt.ﬂﬂ‘ﬁ@ﬁﬁﬁh
;***#+r Function "report-completion™ sends a message to the screen
(detun report-completion ()

{linefeed)

{princ “Wavefront expansion complete™) (linefeed)

iprinc "Type (kill-windows) tc remove screen™) {linefeed) ’t)

:l‘0..QQQﬁ.t‘ﬁﬁﬁﬂﬁﬂﬁtﬂﬁlQﬁﬁﬁhﬁﬂiﬁIﬁﬂﬂiﬁhﬂﬁhﬂth.ﬁﬁﬁﬁﬁ..ﬁ.lﬁ‘ihﬁ.l*.ﬁﬁ'.hﬁ
shArar rynction sort-condition determines the order between
;anefs tuwo cells on the wavefront,
JARAAS Adrguments: two sets of coordinates
gRARGA Returned: TRUE if remaining cost of first cell is less than
AL remaining cost of second.
Habhhld Side Effects: none
(defun sort-condition (Celll Cell2)
{let ((X1 (first Celll))
(X1 (secornd Celll))
(X2 (fixst Cell2))
(Y2 (second Cell2)))
{< (aref *cell* X1 Y1 C)
{(axef *cell* X2 Y2 0))))
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; =*- Mode: LISP; Syntax: Common-Lisp; Package: USER -*-
ARACAACAAAAAAANPAARAARAARAAAARARAAAAAARARAAAAAAAARAAARAAARAAAAARAMAAAAAARAAAAAARNA

.

’

*
AARPAAAAARAAARAAAAARAAARAARARARAAARARAARAMAAAARRAARRARARNARAAARARRAARKARARAAAAR
»

#4444 File "graphics" contains the functions to cpen a window for
4ssss  displaying the terrain, wavefront, boundaries, and back-paths.
j4rsrr Tt is adapted from file "graph.lisp" written by Dr, Se-Hung Kwak

j*4444  Currzent as of 13 May 88

IS X XER]
:-Qﬁhﬂﬂ)\h‘ihhiﬁkﬁﬁﬁﬁﬂﬁﬂﬁﬁﬂikih.laﬁh‘khﬁliﬂﬁh.ﬁﬁﬁﬁv\ﬁﬁ*ﬂﬂﬂﬁ.ilﬁ‘ﬁﬁﬁdﬁﬁﬂﬁiis\
:..t.tﬁﬂﬁﬁﬁﬁhﬂﬁﬂ.ﬂ.ﬁﬁﬁh-.ﬁhttﬂﬁﬁhﬁhﬂﬁﬁhﬂ‘.ﬂﬂ.ﬁﬁ‘i..ﬁﬂﬂhﬁ‘iﬁ..&!ﬂhﬁﬁﬁhﬂ.ﬁ
(defvar *display-window*)

{defvar *draw-window?*)

(defvar Adraw-window-array?)

(defvar *draw-window-width#*)

(defvar *draw-window-height*)

(defvar *draw~window~inside-width*)

{defvar *draw-window-inside-height*)

(defvaz *draw-window-position?*)

(defun initialize~-graphics ()
{(initialize-windows)
(clear-window)
(draw-goazl)
(draw-features *terrain-pixel-list#)
{make-visible))

(defun draw-and-show-window ()
{mapcar ’'draw-pt *boundary-pixel-list#}
{mapcar ‘draw-pt *backpath-pixel-list#)
(make-~visible)
{setqg *backpath-pixel-list* nil))

(defun draw-and-show-bdry-window {)
{clear-window)
{draw-goal)
(draw~-features *terrain-pixel-list*)
(mapcar ‘draw-pt *“boundary-pixel-list#)
(make-visible))

(defun draw-and-show-backpaths ()
(clear-window)
(draw-goal) ,
(draw~features (get-all-backpaths))
{make-visible)
t)

{defun show-boundary ()
(mapcar ’‘draw-pt *boundary-pixel-list?*)
{make-visible)’t)

{defun show-terrain ()
(drow~-features *terrain-pixel-list+)
(make-visible) ‘t)

(defun show-goal ()
{(dravw-goal)

tmabunaiel aldteln
et T VASIYAT

-

LAY

i

(defun show-backpathsa ()
(draw-fcatures (get-all-backpatha))
(make-visible) ’t)

(vdefun initialize-windows ()




(princ "initializing Windows") (linefeed) (linefeed)
(setf *draw-window-width* 650)
{setf *draw-window-height* 560)
(setf *draw-window-position* ’ (75 75})
(setf *display-window*
(tv:make~window ‘tv:window
:biinker-p nil
sposition *draw-window-position#
swidth *Crav~window-width*
theight *draw-window-height*
:name "display-window”
tnave~bitos t
texpose-p t}}
(set.f *draw-window*
{tv:make~Jindow ‘tv:window
:blinker-p nil
tposition *draw-window-position*
swidth frdraw-window-width#*
theight *draw-window-height#
:name "draw-window"
:save~bits t
texpose-p nil})
{setf *draw-window-array*
{send *draw-window* :bit-array))
(setf *drew-window-inside-height*
(send *draw-window* :inside-height))
(setf *draw-window-inside-width*
(send *cdraw-window* :inside-width)))

{defun clear-window()
(tv:sheet-force~access (*draw-window*}
{send *draw-window* :rxefresh}))

{defun draw-goal ()
(tvisheet-force-uccess (*draw-window#)
{oend *draw-window* :draw~-string "%
(- (* *magnification* (first *goal*})) 3)
(+ (* *magnification* (second *goal?*)) 5))))

{defun make-visible()

(send *display-window* :bitblt
tvialu-seta
*draw-window-inside-width*
*draw-window-insida-height*
*tdraw-window-array®
220 0))

‘{defun kill=-«#indowas ()
(send *display-window* :kill)
(send *‘draw-window® :kill)
{(linefeed) (princ "Windows Killed") (linefeed) (linefeed))

{defun draw~features (Pixel-list)
{do ((Pest-of-1jist Pirxel-list (rest Rest—-of-list)))
{{null Pesc-ocf-liost}))
{draw=-pt {first Rest-of-list))))

{defun draw-pr (point-coorda)
(tv:sherr-force~azonaa (Pdraw~window)
(aend *drav-window*
sdraw=point (firat peint-coorda) (second point-coordall))

232

b eii—




£t

TTTITTLIILTCNNT
I I
A4S A4 332 $ 434

.
LS 344 $ 4344 £424

14443444434 34484 44231
grITsTIrrTIITITTITIITI IR ST ITRILRIRTIIIIIIITIIIWMAY
143338333444 32 84223442233 22228 84231 oI
R3S+ 444 4 &4 TITITTITLILTTITTTTTTRTLITITRTRTITTTILIRATTRRTIANR
TrTrTIITIIALTIII LTI TIATTI AT R TI T AT II IR T I IR AT TRk IR
b ¢ 4444 $ 444244 494 4444 T4 3 T 344 T A S R I XY
TorTTrIIIIIITIIIIIRAR IR
zrrsrTTTTTR IO IR T IIIIITIIININY
TTTTYTTTITITIITITITTTINNNNNLTY
TLTTITIIT T T LT ST ISR IL T LTI LIRTITIIIINIIIIL
gTITTTIITIIIIINT

14422 £ 44 444 S $E 44 § S 34 333324442 33213149312344344 2349 ¢ 2424349424224
TeTTrT.  ToTT LTI ET TSI IR I I I IR LT TIRTTTTTTLLLTTTTTTTTITTLTRARTLAALLILTNRT 1$9$4493$443 $344 14113213333 I IS IR S S S N L]
SeTTTTLII I S TIT oI ITITTITTITIITTIITIITITACIINILATTIITLITTTTLLTTINILINY jssestdE4 s ot 41t 21243 R TR TR RIS
R T L Tl R STt T E STt R R TR R AT R S R i § 434 4 a4 a R et 444 4ot a4 4 aad T R e A I S L L A S
Tt 2229321138 R S LTI T L H 2 T34 211222341844 444 e aaidad 44444444 14434334 T d T Tt S e s e i
3343133453313 et tTTTTLI oI T T T I LI LT eI sI T T I LT IITRIITATTLTNTTATTTTTLTTALTTLTLRTRRR 80 18e
soITITrTERITAINIININ TLLTITTTITITOTITITOTTCITLTLNNNL qrosrTTITTI T IO LIIIITII I ORI I ORI IR T RN AT Mt
sTirTILIITITITINW 2933424 e bt £ 2 £44 4334 113244344 FEETE S 2444 S S E e 44 E e A S Y S S I TR I T 3
TTLTTALLTLTITLITITTI I 223 S TR TR IR TR T 1513832 2258 44 T4 4 St £ 24 A4 a4 4 $4 4 444 T S X L R R S
srTLsIIaITIIIIT N P T R L 249244444 844 £4 442423434 4 24 T A PE R I ST SR AT EEE 4 £ 32 4 4442 4 333922 SR AT SS T
LTI [ 232844443344 49444 284344 a e a4 e e It a4 484444 414 e g I I TSI S SRS S
4t 4H4 $ 2R TR S 44
4SS 4492 SIS 4944
rIRTIITRIGETITE

TLLTTLTTXXITLLITITCILT
soanmanmim
1333
rTLTTITITTTTN I

TTLTTTILILT
TTTLTTLTITTTTINIIIN
tIlealaliveclistsnnae
TLTTTTTXTTITRLTINNT
443212243 Tttt tee saeaa g ey R e Y)
STATTTTTLTLTITCTTTLRR R i dheans
TTITITTITITILLIIIITIITINNL
TTRTTITTTITTRITIIRCTIRTRINNNT
3343333944 S22 4354 STETHY S 4424 AN S LSSt S er 3 )
144444444 $344 348 4§ 3 2443 SHFE RS FE P EET ST RA 44T LS4
193424 ¢$34 #4434 23342433 H 14323 S22 442440 4 2
TaTTirTTIITIITTITIIITIITIRLTRTTIITLANININITY

S

Tamsttbtie
TTTITITILT
LR T4 2244

I A TSI T IYY

.t

ATTILRVET A ..

seletitactierssnnse

AR TRINRN ..

LTI

slescteccanrcnnnaen

St elileaTen Tanm

TITTTTTLTTTITTRTLLTLLTALLLLNINNL
19

aslin

23R IR A R I T IS
I ITEEEieeRidi ey
133342V

STRRILTLEARTNG
slaaalTilnatniinn

restl

TrrITINTATeLIIY

TTaRTIITILI

TR 111 3

SALAANRLTNTRT

Tttt 3224441 4342234421985 4 $4 4414 3444 aa g g ad g I 1SS s TN S R T
CLTTITIII T rT IR I LI LTI I TR TSI LT TITTITTITILRTTTICTATTATLLITITLNT
333 4 4 E 3 4444344944 2424231321213 4 21 23R R 2122 TITTLTTITTLTTLTTLTTLTLTTTCTRXALN RN
T S R R et R SR TR 229 2012321 2333834¢4382443 84244243424 4444445434534434434 Sk IS RIS

T PRt E L T T R L3 TR T 21 2233334333439 19324 5333333533 £ 13333211 R g S LT S S R R
TIITIItNIN £ 43444 S 4444 424 £ 4 24 T EE I EEEI 24 ¢ 244 S TEE4 $43 I TRL ALY 299 1353431431 11414 313 I I LR L E LR R R S R e

nnnw

T PRI E S § ST ST r et 24424449 4 £ 44434 2444 S $4E 4 SIEE 4444 £ 44 4 4T S I3 TR A A TR SR T L
R T T T R EY SR L R T 122 T 232 532 2 312244 143444 43 34 S e ded A a4 S A A L R L
B T S TR T IR 1311 3T T AR T R 1423144488 4434 44344 242 33444444 4 444 4 4 ¢4 S A A A S
T rTTTETII T I I I IT LTI ITY LTI I I TITRLTITTLTITLLTITNLLITIN TTZTTCTTLLTTILLTTRLATLTITIXTL “TXTLTTT!MTRIT TN
TTITITTTIIIITLIITILITNTCL LIS ITLLTITIRTTLITITRATXTLRRTCIN 431544444 844¢484444444¢4434 1311 LIS IS S RN T L)
R R T R R Rt R At T3S SR R T $ S 324401 £ 24 2 4 T4 44 2434 $4 4444 444 e 4 4 S d a2 e g S L R T
oL CITILTTEITII ST LTI e LTI T TR T e LT IT I I eI TRt TIT LTI IR TIIITTILITTTITTTTTITTIISTITITINAS 3 -3388oelice
TTITIITITIT IO ST LT IINTLLTTLLLILNINITY TTTeTT I eI IT T SO LTI TTTLATTLTTLLRTLRTLRTAT R TITTITT TR LTI TR TR TT AT AN CTITTLATITINILLwLiTlilile
TTTTTITITTITIT LR LTTTTCLITTINLT =TI LI TTLILRITIN 13 3233343443344 2¢8 4304444344 Ed4494444944444444333343954 939393339383 I I3 Ls
R A 2S4S F R A A S E 444 A 1 1 T E 4 392 44 S 44 S 444 4 4R TR E g S 4 S S T S S A3 S 3 2 3333 TTTT LTI T I LT IR LTI LTSI UTICITIRTTRTITTNTATITITLAITNLTLR
144349k 4 ¢4 44444 444433443 S 2T £ 3 34 TTTTTRTTCIITI T T LT T eI T T LT T T eI TR eI TTLTTTLLTTTITTLITTCTTTTLTLTTTTLTTXIT]TTTLXAXXTLIILALLLLNG LR b eelane
B 12 PR It IR 2T TR 1 33t 148 S 3 I dd £ 444344444 1344 51 4 T R 40 44 4 4 S L S ARSI TELTTLTTTTTLTTITITSITTTITTLTITTTTTLLTTANNINN.
I Bt S S22 ST L R 2R 4R TR 4284343 {4 423443444 434443444414225843324332332%41 £2344444434344343444343442442332332494333 333333 I IR RNt
SERTITITTITTITTTTITTTITITTITOTIIITTIINLILR P R Rt R 3 E 2321252533352 3333333 32813 3443344443433313834434484¢338843433 333383 SR It
TIITTLRTI ST TS STTLTTITTNLT LTI TTTTILTITTLT I T T ST T LTt T T T eI LT TLTIIITTRLIITRTTTITITLTTLTTTTTTTTLTTAIITITIRALTITITTTLLL 2T 203
CEITTTIIITIIT IR T LI T I IV T ISR LI UTTLLITTIRATTIRLTITTCNT TrTILITITITITIIIIINGR TTLTTTIIIT LI e T TT TN IR LI TIT T TITT R LRI I L ITIRITITIILNNNN.
TP TTTIIR I I I I T I T T IO TSI IR S TN LT LTI ST ITITT ITTLL 124233 84334433443344333428 8244 EEE4444444444449 448 eay ATy
£44 4243 A A4 94 4 A3 $34IER AL A2 4] 24 ...nu.mnunu..mnnnnn«nnunuaauou.nuuauaauu..un—nn.rnu—ana-nnu-~n»uru-unuqaﬂnnunnn.nnnuna..

CTTTITITLLTILT IR T T T T e eI erTIe eI e LTI T ITTLTTITTLTTTTTTRTIITTITTTATTMATLARALINN 388w
S R 4R T R 2 1 T3R8 23339132318 243 2249844438444 44444 a4 e 44 d et eI I EI T
1434444438444 444484 4444490349344 3423 2 e p e T 1 13 TUITTITTTTLTLTTIATTTTLTTTLTATALRLNRINS
ToTTTTITTT I I IT LTI TR I ISR T I T T ITIIIINI IR LTI CLATTLLARCCCATLRATLTL LTS 88L
1383332425333 8 614344844 E44 4324444444 4444 23 443434 a e A S TN S S
233433 1 344 T TTIIT I LTI ITI I eI T T I IITILITLATTLTTXTTXTLAITXATITCLIRNNRNTL T 62
rITnIIiInIIW P R 22922338 3243338444332 E 2434424 3444444 244444844 ¢4 ea3 AL SR I SIS

R 44384 5443434333244 34 4444434 4t E14 4 2442 44 T eI S g R S e S S SIS

TrITITTIIITIIII IR IR I

TTTTIT.LTTTITLTIITLTTTTRTTITITTITSTTLLNT T3

Teassass

resw
RS

1TTITTLTITITITITTITITTTNNNNTNT

HHERS £ 344 34 TITITTIIIIN

-
e

cpuocee
23T
Ittt

evsssmavemss
RTILINVING

S

LT
TITTLITIILS

at

s cauadueraden,

cE3Egl-TOAZNA TUT -ob0e YATA

ArC2 <UL SUC PUR STITISCO SUD FUTYINOD
|
- -

sshssesrsssnssvrns

*IIT~SATW)

(LS esuttave,
19§ «outpden,

3aeeh
130¢)

(S5 osutrydew, zeIw) Zaes)
PG <SuTyInm. ZBXR) Zaesd
TS sdutyivm, Jesw) Jlect
(36 oduTrive, 3eaw) Faesd
a0y
saect

138 ecuspiem.
(65 osutyiem,
16y sourTive,
19t eouTyiive.
tey soutrydem,
19y .euttiive.
(53 soutyiive. JeIw) Jaeed
(re .ouryiiem, 11
(cr
«r
ar
wr
(114
L 19
we
(£ 14
(st
e ourrdru.
teg oourraNm,
T ooulym.
(IC woutydum,
{0C sourydime.
(62 .eurtdime
(er .ouryding
(L3 +ourydiwe
(ss outtden,
t§T «outtdim.
Lye eutydem,
(e

-
-~

(tz
[{-H
1134
(£ 39
[£2 4
[£24
(g
(324
(ct
131
(244
(ot
[
tg oourtdets.
{L «outtders,
19 eourydes
1§ eouryden.,

1y eouttivey Jaech
13 cauzyden, 33
12 ooutydve. P13
1T seutTavE, z30¢1

suttdew, 33000

Tw3) VOTEWX  sesee’
- dr3zetergzorive o
- asncen

we= WISH tebe¥SEa :detiaycemcs :XTIASS 14517 (OOCH ~e-




1244

srrsTrTIRIIIIIETITt TTTTITITT eI T LTI RLTITIT LI LRI TITLILLTTTLTILLTTTNLLLL
ST T II I TSI LTI TITTCILITTILTIITTLTTIMALITUL
TTTITTI T T T IR LTI IR II SIS LTI TTI IR TTIILTTLTTTITTTLTTTLTILICTITRNN
T I TITITTTIIIIIIITI LTI I RIII IR
T TTTTITIIIRILIIILI I T III T I LT ITII I IITLITITTRATTUITXTTTLTLRLTTATTLCTTIMR
TTTITITIITITIIIIIIIIIIII IR IR AT I T R T T TR T IR IR T T IR T T b IR R T T iU 19SS $444 £ 4 4§ &4
TrTIIIIITIITITIITIIITITIIRTIIINITNLL TrITIIIIIsININT
T T R T P T L R E R TR RS SR S TR T T TR E 144 £ SR 4 S S 2 et S 4 dadd 44 444444 4344 4 4444 4444 T 4 T S e L T T T L R S S A S R S )
R 422 2413322444444 44433483444444943 448 I 4444434444344 4I3424444828444413440 84849
$94244 2434994434494 43434244448444 4 e
13244494 ¢444 S 449 I PRI RS L SR I R SRR 4 144994 45143 31131 2411 24112 1S 1 1R R T I 1A T R L
14 S 4444t T3 9434944344484 444 24224489444 2¢94484 404 0UEITE{444ESAETRLEAS44 4244449444
ST I T T T I T I I T T I R IT T LI I I I I T ATTTIITTTTLTTAITINITTLITATITILLIN.
444334494623 44 444344242844 4444824494 44444 44 ST2 14 S48 SRR eI R EEY R Eae S S TN aeT)
LTI I TIITIN MY T2 22422223 T42225443 8444222444444 ¢44 445444344 944444444444934499449 224424442433 243324 47}
ST TTI LI L eT IR TLITITTTTTITLTTIRNNT oot TR T TTRTRSTTITLTLLLTLRT . ST T T T T T T T T ST TS ST T TR T TR TITTT TV AR TTALTTLLRTAN L e
1 3R 32 AT E e A TS AT E I A2 T4 2343438 A 444443 A T4 4 344244442 4444444442 344444244448 444 s I A I s e e Y]
AR T TR 2224222244 ST 23 2934 $4444444444442444494422444444884289344234254422 24494 45
R ARt R AT 3931 344443444244 44342244433234434344 113230 AN $4443444¢4 44434424
TTLTTT LT LTI T T IR e T I T T T I It LTI LTI TR IR TR O TUTTRTLTTTIICILNTL LTTTTTLLITTTITICTLINLL
I S E TS RS AT ¢3 S ERA¢ S E SN E 44 24 244 44 £ 4 8444 S A4 44 S Ea4 44 444443344 4443449 3 44 e R I I RS I R g L ]
I RT3 22 2 E RT3 22433 22433333482 4332443844 2353434 8244424444344444349444544224333394¢]
Tt 2R S 4 44 44 R 2442 £ 4494442431444 84 44044444 4444444844444 444 44444444 et i ISty
1403440448434t 23 134153444 342334224429441442442824E31¢42924494351349323 33353333 a 3RS R3 R
IR 4 T T TR AT R R AT R 2433 £ 43 42 1434114443334 441 831 40434 S 4 S St 44 d R 4444 24 44 R LRI IR S T e S S
TPt Tt 1R R ST I ST TR S E A I R e a4 2 344 22 4 F A 44 S T d $42 444 $ 4 44u R4 344 4444444244444 L S I S L R T IR 3 IR ITTITe
e 32 L T R AT T TR S TR TS 32 TR TS TS S S+ 4142242444444 44444434 244444 T at a4 S 4 S e R S L I S S I S 3 R s
e Y g oLt LR e S LR e a4 SR T AT R P A T4 42 4444 224444 444 244 848414 444444 244443443 444344 4 4431 444 S S I L S A 1IN a1 S50 s
TIITTITIIITILIY CTITTTIIILT ST T T I T E I r I Y T T I I T I I IS IR LI TITIITLRLTISTLTTLTITITITTININL
E4 3494 42444 44944 444 SER 4TS 4E4E S S TR4G TR ST EA S SR S S RIS 4 S St 1993339 844449443 4354442444444 422248442843 34 44434424 2SI SR A2
IR 4242 3 T3 R 4343 2 4T 4+ 244 SRS 4 a4 S4E S48 S84 oz o2 e e 82 4 S 44 TR Y S A I TTTTYTTITITITITITRR.
< TSTTTITITTIIN.

TTLTITTTLLTTITITS
TIITTTLILTTTINIMN
TTTTTTTLTLTICTTITTIITNNR
TTTTITLTTTITTLITITILTTNTTLITLT

PR S RPE PRt SRS S S PR R R S22 Y Y

{2423 4 S 4R RE S AP R ST LR 44 S22

AR TATTTRATACINIRNTLL T ...

it

SIS S AR S e RE S S-S TR S X Y 4

ST I TR A R I TR TR 22 T I Y LS STATASTRT 0 v

TrrITTIII I ImIIIIIe

IS et aatt ettt 4 § SE ST E A S SR SR SRS T § SRR ST TRTERRIYYY LYY
it 94 24444444 § TEE 44 S SHETE R4S I IR ARE G IR IR 2 TR TR A

434 PI 44 STRTES R4

seamlacaet

EXS S 2 94 39 334131313239

seIIAEISITY
E3344 34 244
TN
B t341%¢
vemee
IS $ 94

avlaeunbirbala

434S 24 24T S FES4 A A SES S L SR P LY S RT R ¢ ST YY

TR I T IRIT R TTITTRIRIRLTN G et

TTTTTTTICTLLITNNILY
EE44 2 2 4E 44 22 44 S $4 4429 S S FEE R SR
TTISTTILITTITOIILTITTTTLTTTITCTTIITITONLY
TTITITILTTIIITTONITINTIINT
TTITTTITTINLTINIL
TIITIIIIIITIIIY

13313

SRR,

aeanilin

e a4 o4 TTIITITT

TR T

TTTTRTTLTLLITTTTITTTITRITALTTRTLLLTLRRLTLLRITLAN = = 13348444 444444 § 4944 SATRTASANEREY S34 34
TTITTTTITTININLT TTIITTTIIIL I TTTITT I I T I IR E ISR AR R T T RIS T LTI LTI TR I LT TITNLTL
e T3 TR R et TPt R L T2 RS R T AR T LR TR TR R TR R oA o 2oz e s e R 4 4 4 434 4 S T A S IS

celilen

1344443244443 4 234441544434 44434£2444248 44324244 1944 44444338443444444482849444434242444442934493499 942314

wovve
STTIWIT

4333431 R 4244314433 EA1344442844 4484342 e a4 44a4d e e NS bl
STTITIITTTTLTT RIS ItTesIe e ITTILerT I TT T ILeTITTTIIT Izt IIITINTSITTXLTTIIALIXTTAXAXLLXTIXATL

TTTITIILTTTLLLITTTCTITITLITTITILTTTLLLLLILTCIT YT (3

S TITTTTTIIYITRTTI I LTI II LTI LTI T ITIT T ITTTTILIIT TN ITTNRRSTXT AT S TIN AR I TLATEXRXRIEXLITLLLT 124344444444444414439332335353334533834% %%
TTTTITTTITITTIRCTT I Ls LI TR I LT T TR TTIITITTIRIT T IT LTI UL LT IR T I I IR ITA S TR I REAL A XTI IR T TTTTTTITTTLTLTTITTITLTTTLTTTITICIITITTITTICLN (o8
STTTTITTTTTLCLTTLLTXTTTTITAALTTATXTLLLICTARN T TR AR R aat e oy s 3232393434343 4443443 4444444444449 243334333333 (11X

SSSITTTTTITTTTIITSTITITTTIILITITILLITTITIITITIIIITTIIICNY unnnnnnNunuununuunnuuuuuuuuﬂnuuuuuﬂnuuununnnnnnnnnnnnunﬂan»nnnuuunnduunnnuunununnuuuuuu § 12
-,n.'n'..u'.nunnnua.n-'.»n-'-.nnnnnnnnnnnnnnnnanHuunnuunﬂnnnnunnnunnnﬂnuunnnnnnnnudunnunnann*AAnnnnn TTTTTTITRITTITITTITTISTITINI 2L
TITTTIIITINLIIILY TITITITTTIRIRRTINTINTY 13334333 a84 4434433 44444444¢4444343144433933333334333333% )
otnr bttt et 2 £ 44 $ 42 $ 2 ST 2§ S22 22 £ 2§24 4242 ST IEL $4 IS SER AR 22222 =TT 2344444243 8444444 4434 4444244 8223444443444 32 T3 AT ]
AP LOGEE T 1E SudPCT-0ST ¢G5 ET~0TT=3GPCT=00T~3GPCI=0G=LIFPCT=0L=LOGYIT-0L~LISP 2a9atISrLT-05=LISICS=0P=_9SPCT~0C-29SPET~00~LISPTU-"T=L3GPECT
TTTTTITTILTIINIT TTTTTTTTITIIT IS I TI T T I T E RS T ISR T IR L L LT LT TITTTITITTTTITALTTTITLITIRNLL TTITLTTTTTTITITILIN
Tt CITTTITIT I T I T LTI I T I LRI XTE L LI TXTTRTTLTTITLXTLTTLATTTICXTAXTLTLRTTNRNLL STTTITTTITTLTNTLNT
TrITITRIIIIRRT I IR IIIIININ TITTITTTIITTLIIT TN LL T IR R I e TR ITT eI LI TSI I eI RT e eI IR ITITILITTTTTITITTLTLINLTLRN W
tTTTITIIITIII IR TIIIIIII IR T ITIW uuﬂ..,u,'.uun-n..~rnnnun.unuu.uunnuqnu.-.nﬂ...uuuuﬁ.unnnu.uununnnnuununuunuuuuqu»u,un e 1L
WL k3 84 TTTTTIISEITTTTT T L R TT LT TRt eI Tt tersTTetiTrITITTRTTRTLTIITTLITTTITITTLLTITILICTLITIRR. oL
IR TSR SR SE4 S 4R &44 Tt Rt S A TR 23323322232 1338343832434423444 4323438344333 4444434544 5341 TTTITTITITT- {49
prdet~iuiiriduinieg § 4 £ TTTIT oo TTT eI T T I T T I LT eI T I LTI LITLTLTILTLLIINNL TTTTTITTTTLTLLTTITITITINLT
TTTTIIIIIIITIIT LTI E I IT T IR LTIt IIITINTTIITLRTALTTLTTLTATTRTN TIITTT
TIITITITILTIILLIILNY TTTTTTTTLTTLLTILTTTLTIRNIN
TTTTTTIITITIITITICISTIITII LT TR IS TTTITCTITTTITTITITLTLLTTTLTLITITATLTRITAXINATLITTINN
2SIITITISTTAXTT qTRITTTTINITIXT CTTTTILIIITT I LT eI TIT I e eTITT I T I TILTITTTLIILTITIITTTTLLTTTAALICLTNLL
S ESIIISSIIISIIISISIIIIILITTIIRLIITITIIITITNLINLLTTY TTITTIITITIIIT LTI LI LTSI I T T LI T T I I LRI L T I ITRTITLTTTATLTTLIITTATITITTLTATTLRRNR S

fevsneooh it

pvgutugupruteguiatug

privgeprpeiepupuiageiuguing

me sevemswen

rdetepuiagutetvivpuingteip =y gy

seoTrIntY

pindetuintvinbebeprviviubriuindupuind S LA S 4 w3 4

riteteigetegedapuinget e

[eTdvgepuupag

ffedupaieiupubed SRS § SRRERAY

(847

TazssTITSIIIITITITIIIILTIITTIIIIRIRNLTIITINNLITIN TrrTTTITITTIIITIIIIIII I IR TR T IR I I I I I IR I T I I IITINIY TETTTTTTITTTLTLTTTTLLTTTINNLVIUY 3y
SoIIITIIIIITIIITLTTILIIIIIIIITININIIY Hi4341$ 382444342448 444443 2444442244344 2448448341 TTLTLTLITITTTITINTLINLT (84
oI ITIIITII I TTIIIITIIIITIIIIITIIIITTIN LTI TICII LI IILITTTITLLLTITTTATLTLNR (6o

.o cwee
TALIINRLR L.

TTITTe 268

TTTTTITITITITTITATITTTTLTTTITITNININ

TTTLTTTTLTTTTTLLITITICINT {6

TTTTISITIIITTITITTTII TS TS oI T eIt It Il T IR TT I NIRRT XXX XTI ETTTX LTI STTLTLTTTITTALLLLLTTALLT
TTTTTITITITILTET TR LTIz TIoT TSI T IIISIITITT LT T Ao IR RN R EX TR TX T T TT TS TLLLRTILTLTTTTTITALLLLLLLL TTLLTLTTTITTILTTLTITTCT. (98

TTITTTI LTI TT T T TIE LT II LTI LTI IR TS TR AT R TR KSR X RT R IR TIT I ST I TITT TTTTTTITTLLLLTTITLTSTTTITTTTTLTITTCLLCLLT (00
TETSTITTTITIRITLTLITTTIRTTTLITTLLTLITTTLTLLTLTIIILLILTb (€8

-

8y

edRTTICTM,
soutTirw,

TIETH,
oSuTICYN,
coqTTINE,
(3344119
euTTIEM.

soxv)

asuTTdvw,, Jexv)
JpultivE. jexw)
sutrivm. Jexw)

«~outTdvn, 2exw)
suTTitm. Jexv)

susTivw, Zexw)

sugiden, Zexw)

susTivm, Jezw)

sutiivw.

surIivm,

suttivm,

~OUTTIRM,
JSuTIIvN.
«eusTivm,

suTTIvN,
sustitw,
outgiva,
ouTTiewm,
out-i m,
oauTTivm,




S¢z

.
”

6 0L S9T) (6 OL 39T) 16 OL AT U T l8T) (8 %L

(8 TL OLT) (B TL €31) (8 Tz $9T) 18 TL LT (& T
18 2L 9910) (B L £9T) 18 J¢ 33T) te €L I3T) (s €k
19 TL ST} (O L 8ST) (8 L 5 st (8 ¥L
19 §¢ 2210 s SL IST) 18 52 IEX) I ST OST) ‘w9
€5 92 L2T) (8 L SFT) {8 1L SPTY 18 i SPR) tm L2

(L sz SPT) 42 %L U ort) (L st

193639 (s
(9 o €5) (9 L3 L§) (9 98 35) (9 SB SS) U9
{9 T8 tS) (9 36 T9) (9 & 09) (9 06 &5) (9
{9 98 55) (9 52 t¢) 19 r@ C3) (9 CB 35) (0

($ €L T8} (5 €L T3} 1S eL i3) (5 8L tS) (S
(592 8S) (S 5L 65) 1S 3L %) (5 9L Y (S

(tr ye €91 (¥
tr oL 52) (T

(* €2 ) (v CL )
(¥ gL L) (T S T}

(C Lt 08} ¢ 92 28) (C &L ¢8O} (E
tc co o8l (C r8 OB} (C S8 929) !C 9% OB) (T

1z é8 62) ©@
(T 0§ tL) (& T6 L} T 6 I (2

(x e
(T S8 59) (T 35 §9) T &6 *9) 1T L6 € 1T

9V G TLL T

99T (8 ZL 1)

10 (a L 09T}

S5 (e re psT)

95T) (8 9L 6T

0 s Lz .cr0)

SET (L 8L 8eT)

6 t9) 19 0 09)

ve 25} ty Cp €5)

58 85) {9 93 25) 19 23 9%)

28 T80 (9 T oS} 3 O% ¥}
&0 s o8 05)

i §%) 25) (5 oL i)

v 3 ) (5 g2 9

*n oL (v W/P )

st 22} » ol B2}

ot oml 1T Tt 08) € 3t O%)

23 00) T 24 0%) (€ &¢ o8l

59 00 €2 06 L2) 2 06 1)

16 TL) LT 36 OL) 1T 36 49)

6 89 ) (T 36 LM QT

$6 9} o387T-0d00,

{tise oIt

(85 TTT) (@5 TET) (T2 OLTI (L 3PTI (WL LTI (CE $9) (S 33) (60 CB) (0@ &0)(:L %)

(3L 550 (T2 OLT) (8L SPTI (ML LC5) (SL 83TV (84S TET) (85 TIU V. 2FFT-X0IT0AL

la30® (
1433332029438 SR T AT 2124 S 44 S4 243441 24433342343482442444 4234344484444t aRe e saIRIIsLs
2TITTTI I LI T I T I I I I T LTI T LTI TITTTLATCTITTLLTTIITITLINLT
CTTTTCTT T L TY ST T e LT eI e eIT T et eT eI T erT LTI eeTLITRLTITTTIITRITIIRITITIIRTTTTLTILTTTITATLNATXLLCLITITITLARL LN
CTTTTRTRTTT I T T eI Tt eI T T e LRI e T eI Tr et eI T e T T TR rTTeIrTTIsTIeITeIrTITLLLTITTTTLLTLTLTICCATTTATITACLTILILR 2 LM
I nnnnu....aﬁv...f.a.~u-.-un'u.~rn-.ﬂnnuﬂnununnnana.ﬂanun'nanruﬂﬁaua.rna—.'—ununnnnnnunnnannnﬁunnunnnnunnnununnnaunuaunwuuc
R332 22 SRR 3 22T 23333333 £3444 844243 84444844934344 4344 44323344323393324933393933 14444424444332449493443434934343 1333 533355330038 e L
TTITTITTTTTITLTLLTTITLLTTCTLLTCTICLTINNT .nuuun..-.n.-,rnu.«auunnnunuanann.'nnunaauuuuununuannnnnnnuﬂdnnnunnnnnuﬂun'uanunnunnnn.uu»nnnnnnnnno
TITTITTTITTIILITATTNLTIT T n...uuﬁannuﬂn...,aa..'~4n-nuu.nnunﬂnﬂnyuunao..na"a.u-.nunuunﬂﬂaﬂuﬂu—auu...o.u.uﬂﬂ.u.uun..—--n-u~uu-
1321 E et TR 222222322292 2392222288582423333323534323844242993444424¢34344¢44444qqudddsaitiniss TISITITTITINTLR
TTITTTLXTITTTLTLITTNLY CTTTTIITITT TTLII I LI LT LTI It LI I IR T TR eI TTTTITTITTTITTTITICTTCTIINTININ
TTeTIITTTIITITIIIRIIIITIIILLIIININNIY TTTTTSTTTTCTTS TR T T L T T ToTI T eTseRes T T asterITee et reetTeesdtTTTTITITTITITTITIONIINTINN.
P R R 22822 AE R TR 2 R 228221 222333444 43444444434943448443433443834438T2844824444 3434942488504 3gdeeedesess syt aiise
TTTITTTITLTTTITTITICNT 1 R 23 R 23 S SR TR 32 2434 RS 34449443343 3343483384444 54343444444 249% 23 a S eSS a I
T IR T R A TR € L T3 S RS I T L S RS2 At T4 123433338324 33 132 4388¢484449444444443444 4344433434393 3 ST E TR LR SIS 23044
R I R 2 23249 2 TS I 2 433 42433044544 24445 248424484444 348413423344944338948824484944 341448 ST TN
rrrITIITIIIRTIIIRT AT LI IO IITITINIWY TTT T T Ir T IT o r LTt e eI R e e TR TT LT ICLTCITTITLTTTTTTTTATTLNTTLLLTTLNLL R <iN R
TrTIIIITIT IR IT Rt I I LI I I I T I I It II IR I I T T IRt I L IR T IR LI LAt TTLTTI Ty T TT eI T IT R III T T I oI ITIOITINIIINIIIIN.
TTTTITITI T T I I T I T e TR TR TR T I I T ITITIL LI IR ITRLTITITTLTLTTLITLTLITTTITILLNN TITITITTLILNTIL
TInnn TLTTTITINIRT CTTTTII eI T LTI TR I TSR TT LT TITILTILTLTTITITTLLRATITITLIMT
124 44 TTITTITTTILY 144434454384448444 4848444 EE44EEEdd e e e eI s S I3 SIS0
RS2 4449 PR32 23 A TR R AR AR T S ST R 1232322324443 8442424442404 34e ity Eaaeeedq eI NI I
STTTTTIITL T T LTI T T T TR I I LI C LTI II I TR TTITLTINTTTTTTTTLTXTCTTLCACTATICTINTTTLLL 528
CITITTIICITII LTI LT R T T e LTI R ITLTLTTTTTITIOITINITNILNLT.
1333433444443 329 3343 S R T T St Sa e £ 4 £ 43 S SIS L]
144 £4944 8284244333444 4 2424444 ST AT IS SIS ST
TLTTTTIrTT T T TITTIIIITIIT LTI TITTTININN I

TR

T

LEIRRNNANT
ceyrmsrprommve
T ImII

T IIINI I

23313444 222 T2 S 42 4y 44

1
tost
tert
st
tere
(129
sry
(1224
[£4 24
(6421
{1t
tott
({144
(£ ]9
[13 44
et
(434
ret
11334
(444
it
(oct
wx
] 144
(£33
(T
(T4

seugideiie
souytdetta
eontrTdRNL

o.!ddhj_o
~ourtdet,

Jeuttdes,
couyTivw,
+29TTimm,
eourtdew,
eouttdes,
.oamuunla
somTTdON,
oouTTiVE,
soutides,

3%aw)
02}
sexv)




AL T=3GHCI~0ET=952CT-0T SIS0 TT 9GPl ~00T=GECI=06=L9GP AT =00=L9SICT=IL=(ISICT=NY=295PCT-0G=L952C

CUST L e
13T 9L 28T (3T 9L TT 13X

(S SR 1 ¢)
(3T 69 )
T 99 ol)
T ¢ t0)

ot 8§ 2 TD)
0T 95 9%}
10T 85 9IT)
(6 45 2¢0) (6 99
(6 T9 437 (& T
H rrT) {6 Oy
$ 39 4PT) (6 3

ITT L 9CT) 13t

334
(TT 3L STV 3T
(TT &9 IV (1T
(IT 99 6TV ‘1T
(IT €9 #T1) (1T

(ot ¢S SIT) (ot
ot 8¢ ) lot
(0T 8¢ £33 lot

tET) (6 0% sC3}
ort) (¢ 3% orn)
SrT) (s €2 T
oSt} s kS

(23
SL

*r
R ¥ X
29
s
<

es

LY 9
.

1
¢

STt} 1Tt
e ST

- I 8 4
T ¢ I 49
=2V ax
£33 ¢ B §41
T (XN

ot
I (o1
) tot
T tot

Q% sC1e
1ty
1221418

LISTCT~0C-296PCT~0T=29SYTI~0T-LIGPCIT

L
113

"
113
L 14
£ 3
<

(XTT 29 2T (TT 99 €IV (TIT 3§ £3T) (1%

"9
L 13
1 29
s

€T 7 L)
n 3 2a4]
f124 B =4

0T

j 33

[ 134

EX34]

k344 BRI 144 4]
F3 44

4

(6 ¢35 ) [149)
(6 09 i21) [ 124 ]
¢ 22 1) o
(6 *9 Lr1) st

3 IS0




APPENDIX D - HIGH-COST EXTERIOR-GOAL HCA
INTERIOR-BOUNDARY CONSTRUCTION SOURCE CODE

/DhbﬁhAAﬂhtﬁﬂAhAﬁOAAAhAIﬁﬁﬁﬂthﬁAﬁAAAiﬁiAﬁﬁ“hhhﬁkklﬂﬁhﬁhkttﬁhhﬂﬂtlﬂtﬂﬁﬂhﬁhtk

ARPARRAIARARARAAARRRARAARAARAAAAAARARRAAAAARRAARAARAAANAAARRNARAAANAARARAAAAAAAS
*

* TFile "bdrygen",

* Updated 12 Jan 89.

*

* This progrzm generates boundaries for HCA interiors

* and writes them tn two files; "bdry out" is a file of prolog
* facts recording the boundary and terrain information;

i "bdry_fig" is the same info zeady for plotting by the "figure" utility.
* Requires "bgmapdata®, "bgutils®, “bgplotter®, and "bdryjoin"

hd to be in the same directory when started.

* Usage: from unix, type:

¢ prolog

* {bdrygen] .

* bg.

‘ halt.

*
‘Q‘OOQOOb.ﬁﬁt‘tb}h}"tlﬁ)&&ﬁ‘Qbﬁﬁ.ﬁ‘hiﬁ.ﬁnﬂQQQ’QAQQQQQQOQQOQQQOQQQQQ#QQQ&.O
Qﬁ.'h’Qﬂﬁﬁﬁﬁ.ﬂ*ﬂlﬂﬂﬁﬂﬁﬁhﬁhﬁﬁﬁﬁaﬁhtﬁﬁﬁﬂﬁﬁﬁihﬁiﬁh!ﬂﬂﬁtﬁﬁhﬁhﬁﬁﬂﬁhﬂﬂn’ﬁ.‘ﬂﬁﬁ.nt/

by :- assert (write_flag(write)), /* or (write_flag(no_write)) */
initialize bq, -
generate bdrys,
save (bgstate),
tell (user),nl,write(’Boundary genezaticn done {First Fass)’),nl,nl,
reconsulit (bdryjoin),
- bdry_ join.

bg2 :- gqenerate _bdrys,
tell (uaer),wzite ( Boundary yeneration done (Second Pass)’),nl,
bdry join.

generate_bdrys -
geal_peoint (%y,Yg),
region _vertices{(X1,Y1,X2, Y2}RLisk1)),
cons {I%1,¥1,X2,12inList1],(%1,Y2},RList2),
initial_output(([Xg,Yg],RList2,_ ),
clansify edges(PList2, [Xu,Ya],Rhistd),
convert_vlist to elist (1,RList3,RListd},
aasert (region_elist (RListd)),
gencrate_boundariesO(RListd, [Xg,¥g)),
order_inithdry indicesz, .

/*
* Temporarily, file "bgmapdata” must have a predicate for each
* vertex with its optimal path list., Eventually, this should be

* replaced by a call to a path-f£inding program such as "ala" or "rrr™
*/

/*Compare 1a. ardge w/ 2d,3d,., rocurae to comp 2d edyge w/ 3d,4Lh..,eLc*/
< generate bouwwlariesQ((#1,Y1,V12,012,%2,%2), [Xa, ¥g})..
generate_boundariesG((X1,¥1,V12,0812,%2,¥2|Rest]), {%a3,¥al) :-
aenerate_boundariea({%1,¥1,V12,012,¥%2,Y2]|Reat], [¥g, Yg]),
gcnerate_bhousndarient (Reat, {%g, Yy)) .

/* Slopping condition: only one odue lefl, ¢/
aencrate_boundariea(l_,_, » o o _lol_s_)s 2= ¥,

/* 1L vertex Jial from file "bamapdabs® already includen thn /7

/* Lirat pojut as the lang, it will sppenr tuice, an fgnore )

/* Lhe gecond cecurence. #/
gcncxntn_boundarics(lXa,Yn,_,_,xb,Jb,xa,70,_,_,xbrYb],(_,_]) HE I
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/* Type 1 */

generate_| boundaries{[Xa, Ya,v,Hab, Xb, Yb, Xc, Yc, v, Ncd, Xd, Yd|Rest ], {Xg,Yg)) :-~
interior cost(Cx),exterio: cost (Ce), /* 2vis (Typel) bdxy */
plot_ 2vis _bdry (Ci, Ce,Xa,Ya,Nab,xb,Yb Xc,Yc,Ned, Xd, ¥d), /*plot Edgel,E24/
generate | boundaries ([Xa, Ya, v, Nab, Xb, Yb|Rest ], {Xg,¥Xg]). /*{E1,E3|Rest]*/

/* Type 2 */
generate_boundaries((Xa, Ya, v, Nab, %b, ¥b, Xc, Yc, h{F) ,Ncd, Xd, Yd | Rest }, [Xg, Yg}) :-
interior_cost (Ci),exterior_cost (Ce), /* lvis (Type 2) */

plot_ lvis _bdry (F,Ci,Ce,Xa, Ya, H1sb, Xb, Yb, X, Yc, Ncd, Xd, ¥Yd), /*plot E1,E2%/
generate_| boundaries ([Xa,Ya, v, Nab, Xb,YblRest], [Xg,Yg)). /*{E1,E3|Rest]*/

/* Types 3 and 4 */

enerate_boundaries ({Xa,Xa, h(F), Nzb, Xb, Yb, X<, Y, h (G) , Ncd, Xd, YdIRest ], {Xg, Yg}) :-
intexxor cost (Ci), exterior_cost (Ce), /* Ovis (Type 3 or 4) */
plot_ Ovis _bdry(F,G,Ci, Ce, Xa, Ya, Nab, Xb, Yb, Xc, Yc, Ncd, Xd, Yd), /*plot E1,2+/
generate_ | boundarxes([Xa,Ya h (F),Nab, Xb, Yb|Rest ], (Xg, Xg}) . /*(E1, E3|P]’/

initialize_bg :-
consult (bgmapdata),
consult (bgutilse),
consult (baplotter},
tell (user),nl,nl,nl,
write{’Boundaries being computed:’),nl,!.

initial_output ({Xg, Yg],Region, Region_elist) :-
asgertz(title(’’)),
title(Title),
write_to_bdry filef{title,Title),
write to bdry file{goal, [Xg,Ya}),
wrlte to_bdry file(region,Region),
/* w:it¢ to_bdry_file(region_elist,Region_elist),
wrice_ to_ _fig_file(title),
w:xte_to_fig_flle(ooal [Xg,1a}),
write_heading(region),
write_to_fig_file(region,Region), */
1

/* convert list of vertices (vertices are not repeated) to a list
¢ of edges (a vortex appears once for each edge)
* Also number the edges sequentially, and assert the number of edges.
./
conveztuvlist_to_elist(N,[x1,¥1,V1,x2,Y2],IXl,Yl,VI,N,XZ,YZ]) He
asse=rt (number of edges(t}).
convert_vlist_to_elist(y, (%1,¥l,0,%2,Y2|RListRest],
[X1,Y1,0,0,%2,Y2|RevRListRest]}) :-
convert_vlist_to_elist (N, [%2,Y2|RListRest], RevRListRest), !I.
convert_vlist to elist(u,(xl Y1,V1,X2,Y2|RListRest],
(%1, Yl Vl N,%2,Y¥21FevRListRest]) :-
Npluasl is 1 + 1,
conve:c_vlist_to_elist(leusl,(x2,YZInbistRest],RevalstRest), f.

classify_eages (L], {¥g,¥al,L6) :-
edge_visihility check (L1, {Xg,¥9],L2),
rotate_edgn_list (L2,L3),
mack_edges (L3, L4),
ingert_opposite_pt (L4, 15),
Lemark ﬂdg-a(LS,Lﬁ). 1.

/* First step past viz edges, leaving their markings unchanged ¢/

remark_edges((X1,Y1,v, YZ,YZIR»SE],[VI Y1,v,X2,Y2|Reat2)) :~
remack_edges{(%2,¥2[Reat], [%2,721Rest2]).

/* Now step paat h(b) edges. */

remark_edges([%1,Y1,h(b}, %2,¥21Peat], (%L, ¥1,h(b),%2,Y2|Rest2]) :~-
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remark_edges ({X2,Y2{Rest], [X2, Y2[Rest2]).
/* At each h(ob) edge, change ‘ob’ to ‘lLf */
zemazk_edges((Xl,Yl,h(ob),XZ,YZIRest],[Xl,Yl,h(b),X2,Y2]Rest2]) -
romark_edges ((X2,Y2|Rest]), (X2, Y2|Rest2]).
/* At each h(oa) edge, change ‘oa’ to ‘a’ */
. remazk_edges(lXI,Yl,h(oa),X2,¥2laest],lx1,!1,h(a),XZ,YZIRestZJ) Hd
remark_edges ({X2,¥2|Rest], (X2, Y2iRest2)).
/* At first h(a) edge, stop. */
remark_edges((Xl,Yl,h(a),XZ,YZIRestl,IXI,YI,h(a),XZ,YZIRest]).
/* If no h(a) edges, stop. */
remark_edges((X,Y]}, (X,Y]).

insert_opposite_pt (L4,L5) :~ /* On first pass, assume no shortcutting */
not (£irst_pass_done), /* occurs and set up opposite point */
insert_tentative_opp_pt (L4,15), /* and optimal paths accordingly. */
assert_pseudo_ops(L5), !.

insert_opposite_pt (L4,L5) :- /* On second pass, use correct opp point */
first_pass_done,
insert_correct_opp_pt {L4,L5), !.

/* On FIRST PASS, insert tentative opposite point at the midpoint of */
/* the opposite edges, digsregarding any possible shorxtcutting. */
/* Change mazking on otier ‘o’ edges accordingly. */
/* First step past vis edges, leaving their markings unchanged */
insert_tentative_opp_pt ((X1,¥1,v,X2,¥2]Pe2t], [X1,X1,v,X2,Y2|Reat2]) :-
insert_tentative opp_pt ((X2,¥ZIRest], (X2,¥2|Rest2]}]}.
/* How step past h(b) edges. 7/
insert_tentative opp_pt ((¥1,Y¥1,h(b),X2,Y2)Rest], [X1,¥1,h(b},X2,Y2|Rest2])) :-
insert_tentative_opp_pt ({X2,Y2IRest], (X2, ¥Y2|Rest2]).
/* At first h(o) edyge, branch to insert..2, passing opp edge info along. */
insert_tentative opp_pt(iX1,¥l,h{o},X2,Y2{Rest],RevisedL) :-
optimal_path{[X1,Y1]OF1],Cccw),
insert_tentztive opp_pt2([X1,¥1,h(o},X2,¥2|Rest], {X1,Y1]),Cccw,RevisedL).
/* 1f there is no h(a) edge, go to insert..3, then stop at last h{o) edge */
/* opposite point in previous "o’ edges. */
insert_tentative_opp_pt2((X1.Y1,h(o),%2,¥2],0E,Cccw,R2) :~
ingert_tentative_opp_pt3(X2,Y2, [%2,¥2,h{0) |IOE},Cccw,R2) .
/* At each h{o) edge, pass opp edge info along, */
insert tentative_opp_pt2((X1,Y1,h(o),%2,Y2|R},0F,Cccw,R2) :-
insert_tentative_opp_pt2([X%2,Y2|R], [X2,Y2,h(0) |OE]},Cccw,R2) .
/* At first h(a) edge, insert lst-guess opposite pt in previous ‘o’ edges. */
insert_tentative opp_pt2({X1,Y1,hts;,%2,Y2|R],0F,Cccw,OandAList) :-
optimal path([%2,Y1|OPcw],Cew),
reverse _edge lisi (OE,OERev),
edges length (OERev, Length),
D is (Length#Ccw-Cccw) /2, /* opp pt is D along the OEs ccw from ptl */
ins=2xt_tent_opp _pt_along_edges (OERev, D, OERevised),
con? (OERevised, [h(a},¥2,Y2|R],OandAList) .
/* 1f there are no h(a) edges, insert 1lst-guess opp pt in previous ‘o’ edges. */
insert_tentative_opp_pt3(X1,Y1,0E,Cccw,OandAList) :~
optimal_path([X1,Y1|OFcw]},Ccw),
reverse_edge_ list (OE,QERev),
edge_length(DERev,Length),
D ia (LengthiCcw-Ccew) /2, /* opp pt is D slong the OEs ccw from ptl */
insert_tent_opp_pt_along_edges(OERav,D.OandAList).

insert_tent opp_pt_slong_edgea(([X1,Y1,h{0),X2,Y2|CE],b, [X1,¥1,h{ob) |[CERev}) :=~
distance(X1,Y1,%2,¥Y2,01), D2 is b - D1,
p2 > 0,
- insert tent _opp_pt_along_edges([¥%2,Y2|0OE],C2,0ERev).

{¥%1,¥1, 1 (ok), Zopp, Yopp, h (oa) |OERev]}) :~

distance (X1,¥1,%2,32,Pr1), D2 is D - i,
p2 =< 0,
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DelX is X2 - X1, DelY is Y2 - Y1,
Xopp is X1 + DelX*:i5/Dl), Yopp is Y1 + Del¥*(D/D1),
assert {opposite_point (Xopp, Yopp}) .,
change_o_to_-oa({X2,YZ|OE],OERev).

change_o_to_oa([X,Y), (X, Y]} := !.

change_o_to_pn(IXI,Yl,h(a),XZ,YZIOB],IXI,Yl,h(&),XZ,YZIOB]) - 1,

change_p_to_oa([Xl,Yl,h(o),XZ,YZIOE],[xl,Yl,h(oa),XZ,YZIOERQV]) He
change_o_to_-oa([X2,X210E], [XZ,Y2|OERev]), !.

/* At each vertez along tentative opposite~edge sequence, assert a */
/* pseudo-optimal-path as if no shortcutting occurred */
/* First step past visible edges */
assert_pseudo_ops(({X1,Y1,v,X2,¥2|Rest)) :~
assert_pseudo_ops([X2,Y2[Rest])}.
/* Now step past ’before’ edges */
assert_pseudo_ops({X1,¥X,h(b},%X2,Y2|Rest])) :~-
assert_pseudo_ops((X2,Y2[Rest]).
/* At first ‘opposite’ edge */
assert_pseudo_ops((X1,Y1,h{ob),Xx2,Y2|Rest]) :-
optimal_path{([Xx1,YljOP1l]),
assert (pseudo_optimal_path((X1,Y1lO0P1]})),
exterior_cost (Ce),
assett(pseudo_optimal_path([x2,¥2,c(Ce),x1,¥1|0P1])),
assert_pseudo_ops2({X2,Y2|Rest]).
/* At subsequent ’‘opposite’ edges */
assert_pseudo_ops2({X1,Yl,h(ob),X2,Y2}{Rest]}) :-
not (opposite_point (X1,¥1)},
pseudo_optimal_path{(X1,YL1|OP1]),
exterior_cost(Ce),
assett(pseudo_optimal_path([xz,YZ,c(Ce),xl,YlioPll)),
assert pseudo _ops2((Xx2,Y2|Rest]),
/* At edge with ’‘onposite point’ */
assert pseudo_ops2({X1,Yl, h(oa),X2,¥2|Rest]}) :-
opposite_point (X1,Y1),
agsert_pseudo_ops3((X2,Y2|Rest}),
paeudo_optimal_ path([X2,¥2({0F2}),
exterior_cost (Ce),
assert (pseudo_optinal_path([X1,Y1,c(Ce),%X2,Y2|0P2]))}.
/* 1f there are no ‘a’ edges, assert clockwise OP at vertex and stop. */
asszrt_pseudo_ops3([X1:Y1]) :-
optimal_path({(x1,Y1|OP1}),
assert (pseudo_optimal path([X1,Y1l{OP1]})).
/* Search to end of ‘o’ edges, asserting clockwise OP at each cw vertex */
assert_pseudo_ops3((X1,Y1,h(oa),X2,¥2|Rest])) :-
assert pseudo_ops3([X2,Y2|Rest]),
pseudo_optimal_ path((Xx2,Y2(|0P2}),
exterior_ cost (Ce),
assert (pseudo_optimal_path([X1,¥1,c(Ce),X2,Y2|0P2])).
J* At first ’'after’ edge assert & cw ps-op and stop. */
assert_pseudo_opsi?{Xl,Yl h(a),X2,Y2|Rest}) :-
optimal_path{{x1,Y1]0P1}),
assert (pseudo_optimal path({X1,¥1|OFl])).

/% On SECOND FASS, insert correct opposite point into the */

/* the opposite edges, disregarding any possible shortcutting. */

/¢ Chengs macking on Gthsr ‘G’ €dyes accoxdingly. 7

/% Firat step past vis edges, leaving their markings unchanged */

1nsezt_correct_ppp_pt([xl,Yj,v,xz,YZIRest],[xx,Yl,v,XZ,YZIRestZI) Hid
inaert_correct_opp_pt{(¥2,¥2{Rest], [%2,Y2|Rest2)).

/* Nou atep past h(b) edaea. */

insert_correct_opp_pt ((X3,¥1,h(b},%2,Y2IRest]}, [%1,¥Y1,h(b),X2,¥2]Rest2)) :-




insert_correct_opp_pt ((X2,Y2[Rest]}, {X2,¥2|Rest2)).
/* At each h{o) edge, see if opp pt is on this edge. */
/* If so, revise rest of h(o) edges end insert opp pt. */
insext_correct_opp_pt{{X1,Y1,h(o),X2,Y2|Rest],
[X1,Y1,h(ob),Xopp, Yopp, h({oa) ,X2,Y2|Rest2]}) :-
opposite_point (Xopp, Yopp) ,
on_line (Xopp, Yopp, X1,Y1,%2,%2),
change_o_to_oa([X2,¥Y2|Rest], IX2,Y2|Rest2]), 1.
/* 1f not, mark edge h(ob) and look at rest of h(o) edges. */

insert_correct_opp_pt (IX1,Y1,h(0),X2,Y2{Rest], [X1,¥X1,h(ob),X2,Y2|Rest2})

insert_correct_opp_pt ((X2,Y2{Rest]}, {X2,¥2|Rest2]}).

/* Step thru edge-list, rotating it until all visible edges are on ite

/* front, and all hidden edgus are on its end.

/* Upon finding a hidden edye before any vis edge, put it on the end,

/* and start again looking for vis or hidden edges.

rotate edge list ({X1,Y1,h,X2,¥Y2|Rest], RevisedList) :-
cons((X2,Y2|Rest], (h,X2,¥2],L2),
rotate_edge_list (L2,RevisedList), !.

/* Upon finding first vis edge, step thru the list keeping vis edges in
/* oxder, and then keeping hidden edges in order. If any vis edges are

/* on the #nd of the list, put them on the front. */

/* and if so, put them on the front, maintaining order.

rotate edce list ((X,Y,v|Rest},FullRevisedList) :-
rotate_edge list2((X,¥,v|Rest],RevisedList,FrontofLiet),
cons (FrontoflList,RevisedList,FullRevisedList), !.

/* Go past the front-end visible edges. */

rotate_edge_list2((%1,Y1,v,%2,¥2|Rest], (X1,Y1,v]|L2],FrontofList)
rotate_edge_list2(([X2,Y¥2|Rest),L2,Frontoflist), !.

/* Go past the first hidden edge after the visible edges. */

rotate edge_list2([{X1,Y1,h,%X2,¥2|Rest], {X1,Y1,h{L2],FrontofList)
rotate_edge_ list3((X2,¥2|Rest},L2,FrontofList), I.

/* Go past the rest of the hidden edges after the visible edges.

rotate_edge_ list3((X1,Yl,h,X2,¥2IRest]}, [X1,¥1,h|L2),FrontofList)
rotate_edge_list3([X2,Y2|Rest], L2, Frontoflist), !.

& -
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*/
*/
*/

*/
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*/

/* 1f visible edges are found past th2 hidden edges, the rest will also */

/* be visible; send the rest back up to be put on the front of the list

xotate_edge_list3([X,Y,v|Rest]), (X, Y],FrontofList) :-
all_but_last_coords([X,Y,vIRest),FrontofList), !.

/* Ending condition. */

rctate_edge list3(([X,¥],I[X,¥),{}) =~ 1.

/* 2liminate the last coordinates and the last edge-vis flag */
all_but_last_coorzds((X, Y}, []).
all_but_last coords({X,Y,VIRest]}, [X,Y,VIRevisedRest]) :-

all _but_last_coords(Rest,RevisedRest).

*/

/* mark edges before (b), after (a}, or oprosite (o), based on whether */
/* they are before or after the opposite edge, or undetermined. */

mark_edges(L},L3) :~

mack_edges2(L1,12), mark_edges3(L2,L3), assert_opposite_edy=(L3).
/* 'mack_edgns2’ marks ‘h(b)’ or 'h(a)’ based on opt paths of edge itself. */

/* Base case for ’‘mark_sdges2’. */
mark_edgea2(l_,_),(_,_)).

/* First step past vis edges, leaving their markings unchanged */

mark_edges2 ([X1,¥1,v,X2,¥2|Pest], [{%1,¥1,v,%X2,Y2|Rest2]) :-

merK_sdgeEsZi{ing, ¥2iResl), iX2, ¥2iReat2i} .

/* Upon finding a hidden edge, check if it is ’b’ or ’a’ or ‘o' */

/* It is 'b’ if opt path from ¥2,Y2 starts toward X1,Y1. */

mark_edges2((%1,¥1,h,%2,Y2|Rest]}, (X1, ¥1,h(b), X2, X2|Rest2]) :~-
optimal_path((X%2,Y2,c(C),Xi,Yi!_]},
on_ray(Xi, Yi, X2,Y2,%1,¥1),
mark_cdges2 ([%2,¥2|Rest), {¥2, Y2|Rest2}).

/* It is 'a’ if opt path from X1,Yl starts towaxd %2,YZ, */
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mark_edges2({X1,¥1,h,X2,¥Y2|Rest}, {X1,Y), h(a),%X2,Y2|Rest2]}} :-
optimal path([X1,¥!,c(C},Xi,¥il_]),
on_ray(Xi, Yi,X1,Y¥i,Xx2,Y2),
mark_edgesZ((X2,Y2|Rest}, [X2,Y2|Rest2}).
/* Otherwise it is potentially an opposite edge, 30 mark it with ‘o’ */
mazk_edges2(([Xx1,Y1,h,X2,YZ2|Rest], {X1,¥1,h(0),X2,Y2|Rest2}) :-
mark_edgzo2([%2,¥2{Rent]), [%2,Y2{Reat2)).

/* mark_edges3 marks 'b’ or ‘a’ based on previnus marking of adjacent edges. */
/* First step past vis edges, leaving their markings unchanged #/
mark_edges3(i{x1,¥1,v,X2,Y2[Rest], [¥X1,Y1,v,X2,¥Y2|Rest2]) :-
mark_edges3 ({X2,Y2IRest], [X2,Y2|Rest2])).
/* Now deal w#itk hidden edges. */
mark_edges3{{X1,¥Y1,HL,X2,Y2)Rest], [(1, Y2, H2, X2, Y2} Rest2]) :~-
mark_edges4((Xi,¥1,H1,X2,¥2|Rest], {X1,Y1,3!2,X2,Y2[Rest2]).
/* Base case §1. End of list., #/
mark_edgesd ({X,Y), [X,7)).
/* Base case #2. Unknown, or as previously marked. #*/
mazk_edges4 (ix1,¥1,8,%2,%2), {¥1,¥1,H,X2,Y2}).
/* Base case #3. It is 'b’ if next edge is already ‘b’. */
mark_edgesd ({X1,¥1,h(0),%2,Y2,h(b),%3,¥3}, (X2,¥Y1,h(b),X2,¥2, . h(b),%3,¥3)}.
/* Base case #4. It is 'a’ if p:evious edge is already ‘a’, */
mark_edgesd ([X1,¥Y1,h{a),X2,¥2,hlo), X2, Y3}, 1X1,¥1,b{a),X2,%2,h(n),Xx3,¥3]).
/* Base case #5. It is still potentially an opp edge, as previously marked. */
mark_edgesd {{X1,Y1,H0,X2,Y2,H1,%3,Y3}, (¥1,¥Y1,H0,X2,¥2,H1,%X3,¥3)}.
/* It is ‘b’ if next edue is already ‘b’. */
mark edgesd([x1 Y¥1l,h{o),%X2,¥2,h(b),X3,¥3|Pest]},
{X1,Y1,h(b),%2,¥2,h{b),X3,Y¥3|Rest2}) :-
nark_edges4 {{x2,%2,hi(b),X3,Y3|Rest], [X2,Y2,h(b),X3,Y3|Rest2]).
/* 1t is ’a’ if previous edge is slready ‘a’. ~/
mark_edgesd ([X1,Y],h(a),X2,¥Y2,h{0),%X3,Y3|Rest],
[X1,Y1,h(a), X2,22,h(a),%X3,¥3}Rest 2]} :-
mark_edgesd([X2,¥2,h(r), %3, YI|Rest], [X2,¥2,h(s),X3,¥3|Reat2]).
/* Otherwise it may be an opposite edge, so leave it as pzeviously marked. */
mark_edgesd((X1,Y1,H0,X2,Y2, H1,X3,Y3|Rest]), {X1,¥Y1, HO, X2, Y2, H2, %3, Y3 [Rest2)) :-
ma:k_pdges4([XZ}Y2,HI,X3,Y3|Re3t],[X2,Y2,H2,33,¥3|Rest2]).

/* First step past vis edges */
assert_opposite edge((21,Y1,v,X2,Y2|Rest]) :-
asyert opposite_edge ((X2,¥2[Rest])).
/* Second step past h(b) edges */
assert._opposite_edge ([X1,Y1,h(b),%2,Y2|Rest]) :-
assert_opposite_edge ([X2,Y2|Rast]).
/* At first opposite edge, get rest of opp edge and then assert info */
assert opposite_edge ({X1,Y1,h(0),X2,¥2|Kest]) :-
assext_opposite_edge2({X2, Y2|Rest},Rest2),
fayert (oppcsite_edge ([X1,Y1,h (o) [Rest2]))), !.
/* At firat h(s) edge, or at end of list, stop. */
assert_opposite_edge2(([X, Y}, {X,¥]}.
assert_opposite_edge2([X2,Y1,h(a),X2,Y2[Rest], [X1,¥1]).
/* at each h(o) edge, get rest and send back opp edge verkices */
zasert_opposite_edge2({X1,¥1,h(0),%X2,Y2[Rest], [X1,Y]1, h(o) |Rest2}) :-
assert_opposite_edge2((%2,V2|Restj, Rest2), !,

'looaﬁGOG0‘.Q‘O‘d‘bl.’hh“\OQ’lﬁth..00‘.0«‘QOQ"Q‘QAQQQQ"k.ﬂﬁi.ﬁﬁﬁﬁ."tti!ﬂ.’/

/* Succeeds if 13t pt is on a ray from 2nd pt to 3rd pt bekween the two pta, */
/* & £ails o/w. Suczeadn §f lat pt = 3ed pr, £2ilz 4f 13t pt o= 2ad pou A/

on_ray(#2,¥2,%1,Y),%2,¥2).
on“zay(xi,Yi,Xl,Yl,XZ,YZ) Hl
strictly between(Xi, %], X2),
strictly between(Xi, ¥Y1,Y2),
Yx Lo Xi* (¥2-Y1)/(%X2-%1) 4 ¥2 =~ n2* (¥2-Y1) /(X2-X1),
within_tolerance (Xi, ¥x,%i,¥i).
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/* Binds UL to the list wf opposite edges. */
get_o_edges([_, ,h(v) IR],UL) :- o_edges(R,UL).
get_o_edges((_,_,h(b) {R},UL) :~ o_edges(R,UL).
get_o_edges((X1,Y}, h(o),%X2,¥2IR], [¥1,Y1,X2,Y2|RestUL]) :-
get_o_edges([X2,Y2|R],RestUL) .
get_o_edges({ , ,h(3)IR},()) :- get o edges(Rr,(]).
get_o_edges(1_,_), (). .

order_initbdry_indices :-
retract (initbdry ({1,0),.B)),
sort {{1,Jj}, (12,32)),
asserta(initbdryi(iz,a),s)),
fali, 1.

order inithdry indices :- 1.
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File "bgplotter® has the pradicates which plot
boundaries of various types. It is loaded by "bg".
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This predic. plots 2wvis/ {(Type 1) boundzries between two .ICA edges, ie,
between two visible edges

Updated 12 Jan 89.

Ci : interioz (high) cost

Ce : exterior (low) cost pt C
Alpha : included angle of A\
region vertex \
Beta : angle between first \ High-Cost Area
edge (pt V to pt A) and \ Intexior, cost = Ci
a line between the \
vertex and the goal. \
Gamma : angle between second \
edge (pt V té pt C) and \
a line between the \
vertex and the goal. \Alpha
Dl : distance from goal toc vertex, Gamma |\ ,
RotAngle : angle needed to rxotate pt V Pt A
the -x~axis counterclockwise / Beta
to bring it parallel with .
the first edge (V to A) / Exterxior,
Xa,Ya : coords of first point. . cost = Ce
Xv,¥v : coords of sescond point, /
the vertex, connected-to pt A +
¥c,Yc : coords of third peint, Goal
Xv2,Yv2 : if the edges- arc not
counected, these axe -the Hexe the rotation angle ~ 0.

coords of the “inner" vertex
of the seccnd edge, cof which
gt C iy the other vertex.

plot_2vis_bdry(Ci,Ce, Xa, ¥a, Nab, Xb, ¥b, Xc, Y¢, ted, Xd, ¥d) -

virtual vertex(Xa,Ya, Xb, ¥b, Xc, Yc,Xd, ¥d, Xvv, Xvv},
plot_2vis_bdsy allcasas(Ci,Ce,Nab,Hlcd,%a, Ya,Xvv,Yvv,Xd,¥d), I.

plot_2vis_bdry_allcases(Ci,Ce, N1, N2, Xa, Y3, xv, ¥v, %c, ¥C) 3~

initialize_for_bl, /* This is a 2v/ oxr */
goal_point (Xg,1g), /* Type 1 boundary. */
pi "’1) ’

distance (Yv, Yv, Xg, ¥g,D1),
distance (Xv, ¥v, Xc, Yc,D2),
distance (Xa, ¥a,Xv,¥Yv,D3),
distance (Xa,Ya, Xe, Yc,D4),

Al At mmnan iIVa Va: Vv Yo NGL
e R LT A R+ PR A R A b 2

not (D1=0) , not (D2=0} , not (D3=0), /* £ any of these fail,*/
not {D4+=0), not {D5=0), /* => progxumming error or map error */
rToal ta (D2424D372-D4”2)/(2°D24D3),

arccos{Cosl,Alpha),

Cos2 is (D1*240372-D572)/(2*P1*D3).

arccoa {Co92, Beta),

Gammns iz 2*Fi = Alpha - Beta,
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ThetaCrit is asin(C=z/Ci),

tell(user), write(’2vis (Type 1) bdry being plotted between edges ),

write (H1),write(’ and f),write(N2),nl,

check_input_for_typel(Alpha,Beta,Ganma,Theth:it,Dl),
compute_angle_ot_:otation(xV,!v,Xa,!-,RotAngle),

assert (bdry ({Xv,¥v])),

calc_bd:y_typel(Alpha,Dcta,Gamma,ThetaC:it,Dl,Xa,Ya,Xv,Tv,

rotate bdry (RotAngle),

bdry (Bdry),

reverse_path_list (Bdry,RevBdry),
t:uncate_off_map(Revbdry,rinalad:y),
assezt(initbdry([Nl,NZJ,rinalad:y)),

/* tell(bdry out}, write(’ Type 1 *),nl,
write_to_bdry_tile(bdry,Bd:y,Nl,NZ),nl,
output_to_figure_ file, */

1

initialize_for_bl -
avolish(done,0),
abolish(bdry,1),
abolish(thetal, 1), !.

calc_pdzy_typel(A,B,G,Tc,Dl,Xa,Ya,xv,rv,Xc,Yc) -
pi(pri),
get_?l_:ange(G,Xv,Yv,Xc,Yc,Tlmin,Tlmax),
precision(Precision),
DelT: is (Tlmax-Timin) / (Precision/2),

Tlinit is Timin - DelT1/2, /* let 1st point be closer to vertex */

assert (thetal (T1init)),
xeLtact(thetaI(Tlpzev)),
Tl is Tiprev + DelTl,
Tl < Timax+0.01,
Tl < Fri/z,
assert (Lhetal (T1)),
calc_bd:yl_pt(Dl,Tl,A,B,G,Tc,T3,T4,Yl,!2),
store 2vis_ results(-T3,-T4,Y1,¥2,8,D1,Xv,Yv),
done, 1.

calc_bdry typel( , , , , , , , v o) =1,

calc_bd:yl_pt(Dl,Tl,A,B,G,Tc,
T3,T4,¥1,Y2) :-
abolish(donel, 0),
abolish(theta3, ),
abolish (increment, 1),
pi(ri),

InitIncr is -(Pi-B} /2, /* 1/2 of range of Theta3 */

assezt(inc:ement(lnitxncr)),

TIinit i» B-(Pi/2),

assert (theta3 (T3init)),

retract (theta3(13)),
calc_tpsilon(Dl,Tl,A,B,G,Tc,T3,T4,Yl,Y2,5),
get_direction(E,Direction),
geL_TBnew(Di:ection,Ta,T3neu,Incr),

assert (thetal3 (TInaw) ),

donel, !,

virtual vertex(¥1, ¥l %2 v2 v3I va va

gy

-~
- T L
line_intersection{xi,¥Y1,x2,¥Y2

3)RY,¥v) - 7% the virtual vaortex s */
[4

X3,Y3,X4,Y4,%v,¥v), 1. /* the point of &/

/* intersection of the Jines. */

er_TI_range(Q,ZV,?v,Xc,Yc,Tlinit,Tl(inal) o
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Tlinit is G-pi/2,
goal_point (Xg, Yg),
distance (Xg, Yg, Xv, ¥v, D1),
distance(XC/Yc,xV,Yv,DZ),
Qistanee(xg,Yg,Xc,rc,DB),

Cos is (D2724D342-D142) / (24D2*D3),

arccos {Cos, Anyly),
get_Tifinal{Aagle,Tifinal), 1!.

get_T1final(Angle,T1final) :-
Angle > 0.05,
pi(ri),
Tifinal is Pi/2 - Angle, 1.
get_Tlfinal (Angle,T1final) :-
Angle =< 0,05,
pi(rPi),

/* Make Thetal a little larger #/

Tifinal is ((pi/2 ~ Angle)+(Pi/2)) /2, |.

get_direction(E,minug) :-
E > 0.001,!,

gct_direction(z,plus) e
E < ~0,001,!.

get_direction(E,done) :-
aysect {donel, .

g=t_T3new({done, , , } := 1,
getnTBncw(plus,TS,r3new,Incr) -
increment (Iner),
incr < G,
T3new is T3-Incr,
Balflncr is ~Incr/2,
zgt:act(incremcnt(_)),
aasezt(inczement(nalfxncr)), LR
get~?3new(§lgs,r3,r3new,Incz) t-
zetrack {increment {1ncr)),
T3new is T3+Incrk,
assert (increment (Incr)), .
g2t_T3new{minus, T3, T3new, Incr) :-
increment (Incr),
Incr > 0,
T3new is T3-Incr,
Haiflncr is ~Incr/2,
zetzac;(incremcnt(_)),
uasezt(1nc:ément(ﬂa1£1ncz)), L
ggt_}Snew(minua,T3,T3neu,1ncr) -
retzact(incremcnt(Inc:)),
T3new is T341ncr,
assert {increment (Incr)), |!.

/A
/%
VA
VA

/*
/*
/*
/*

calc’zp:ilon(Dl,Tl,A,B,G,Tc,TS,T‘,Yl,?Z,E)

T2 is asin(sin(Tc)':in(T])),
T4 is usin(sin(Tc)'ain(T3)),
SinTc is sin{Tc),

X1 is DI*sin(G)/cos(T1),

Yl is D1*sin{3) /cos(T3),

Al is Ditsin(A) /zos(T2),

A2 is Dl*sin(p)/cos(T4),

Bl 1s coa(Tl-G)/cos(T1),

B2 is cco(T24A)/cos(T2),

83 i o3 {T3-B) Sfcos |T3),

B4 i3 cos{T44A}/cos (T4},

Y2 is Al‘(BB-Bl'Bﬂ)/(;-BZ*Bd),
Y2 is

Lha iz SinTe'¥i 4 x2,

AZ’BI-(xz'coa(TZJA)/cosiT4)),

I£ direction of search */
has changed, halve the */
incr & change signs, */
otherwise don’t, */

If direction of swaxch #*/
has changed, halve the #/
incr & change signs, */
otherwise don’t, */
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Rhs is SinTc*Y1l + Y2,
£ is Lhs-Rhs, !. /* E>0 if Cost(X~-path) > Cost(¥Y-path) */

check_input_for_typel(A,B,G,Tc,D1) :~

pi(Pi),

A >0, A<Pi,

B > Pi-A, B < Pi,
G > Pi-A, G < Fi,
Tc > 0,

Tc < Pi/2,

p1L >0, !.

check_input_for_typel (Alpha, Beta, Gamma, Thetacrit,Dl) :-

convert rads_to_degr (Alpha,Alphabeg),
convert_rads_to_degr (Beta, BetaDeg]),
convert_rads to_degr (Gamma,GammaDeg),
nonvert_rads_to_degr (Thetacrit,ThetacritDeg),
tell (user),

write(’ ERROR in type 1 input: Aw='}),
write (AlphaDeg),

write(’ B='),

write (BetabDeg),

write(’ G='),

write (GammaDeg),

write(’ Dl="),

write (ThetacritDeg),

write(Dl),nl,

fail, !,

/tﬁﬂ.aﬁQQQﬁiQt‘ﬁihﬁhhﬂtﬂﬁﬁﬁﬁﬁ*!ﬁﬂhf-ﬁﬁtﬁtﬂiﬁﬁﬁﬁ*hhkﬁhﬁl*ﬁﬁiﬁhtiﬁhhhﬂﬁhhﬂﬂﬁﬁﬁﬁ
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This predic. draws lvis (Type 2) boundzries, ie, boundaries between
one visible ani one hidden HCA edge.

Updated 31 Jan 89

"plot_lvis_bdry” draws a boundary for edge 1 visible and edge 2 hidden;
*plotbdry2 inv" draws a boundary for edge 2 visible and edye 1 hidden;

pt D
Ci : interior (high) cost /
Ce : exterior (low) cost / High-Cost Area
Kipha : includad angle between pt Pl / 1Interior, cost = Ci
the two edges, /:
Beta : angle between first /¢
edge (pt V to pt A) and / : Alpha
a line between the Ft C\ :
vertex and the goal. \ :Gamma
X1 : distance from goal ko vertex. :
Angle : angle needed to rotat: pt B\ pt A
the x-axis counterclockwise . Beta
to bring it paxallel with \
the first edge {V to A) . Exterior,
Xv,Yv : coords of secend point, \ cost = Ce
the vertex. +
Goal

Here the rotation angle = 0

plot_lvis_bdry(o,Ci,Ce, Xa, Ya,Hab, Xk, Zb, ¥c, Y, Hed, Xd, ¥d) :~- /* Opposite edge. */

not (oppesite_point (X7, Yel),
poeudo_optimal_path((Xe, Yo[OPc)), /* lst-pass, no shortcutting */
counterclockwiae ([%z, YolOPC), /* 1If before opposite point.*/
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tell (user),
write(’1v/b (Type 2) bdry being plotted between edges '),
write (lab),write(’ and ’),write(Ncd),nl,
goal_point (Xg, Yg), /* 1v/- (Type 2) bdry */
translate_line(Xb, Yb,Xc, Yc, Xd, Yd, Xdtx, Ydtx),
path_length([Xc, Yc|OPef, D1},
distance (Xb, Yb, Xc, Y¢,D2calc),
add_epsilon_if zero(D2calc,D2),
distance (Xb, Yb, Xg, Yg,D3),
distance (Xc, Yc, Xd, Yd, Dcd),
distance (Xa, Ya, Xb, Yb,Dab),
distance (X3, Ya, Xg, Yg, Dag),
distance (Xa, Ya, Xdtr, Ydtx,Dadtr),
distance (Xa, Ya, Xc, Y¢,Dca),
Cosl is (bcd”~2+Dab~2~Dadtr~2)/(2*Dcd*Dab),
szccos (Cosl, Alphahbs),
sign_of_Alpha{AlphaAbs, Xa, Ya, Xb, Yb, X¢c, Y, Xd, ¥d, Alpha),
Cos2 is (D3”~24Dab”~2-Day”~2)/(2*D3*pab),
arccos (Cos2, Beta),
Cos3 is (D2~2tpab”2~Dca*2)/{2*D2*Dab),
arccos (Cos3, Gamma),
compute_angle_of_rotation(Xd,Yd,Xc,¥Yc, RotA),
connected (Xa, Ya, Xb, Yb, Xc, Yc, Xd, ¥d, Conn) ,
plot_lvis_bdry2 (before,Conn,Ci, Ce, Nab, Ncd,
‘Alpha, Beta, Gamma,D1,D2,D3,
Dag,Dab,Xc,Yc,RotA), 1IN

plot_1ivis_bdry (o,Ci,Ce, Xa, Ya,Nab, Xb, Yb, Xc, Yc, Ned, Xd, ¥d) :- /* opposite edge */

pseudo_optimal path{(Xd, Ydjord]), /* Must be after opp pt */

tell(user),

write(’1v/a (Type 2) bdry being plotted between edges '),

write (Nab),write(’ and ’),write(Ncd),nl,

goal point {Xg,¥g), . /* 1v/- (Type 2) bdry */

translate line(Xa,Ys, Xd, Yd, Xc, Y¢, Xctx, Yctr),

path_length{(Xd, Yd]OFd},D1),

distance(Xa, Ya, Xd, Yd,D2calc),

add_epsilon_if_ zero(D2calc,D2),

dlstance(Xa,!a,Xg,Yg,DB),

distance (hc, Y, %d, ¥d, Dcd) ,

distance (Xa, Ya, Xb, Yb, Dab),

distance (Xb, Yb, Xg, Xg, Dbg),

distance (Xb, Xb, Xctr, Yctz, Dbetx),

distance (Xb,Yb, Xd, ¥d, Ddb},

Cosl is (Dcd*24nsb*2~Dhctz*2)/ (2*pPcd*Dab).

arccos (Cosl, AlphahAbs), .

sign_oZ_Alpha{AlphoAbs,Xb, Yb, Xa, Ya, Xd, Yd, Xc, Xc,Mlphw),

Cos2 is (D3~2+Dab”2-pbg*2)/ (2*D3*Dab),

arccos (Cos2,EBeta),

Cos3 is (D2~2+pab”2-Ddb"Z)/(2*D2*Dab)},

arccos (Cos3,Gamma},

compute_angle_of_rntation(Xd,Yd,Xc,Yc, RotA),

connected (Xa, Ya, Xb, Yb, Xc, Y¢, Xd, ¥d, Conn) ,

plot_lvis_bdry2 (after,Conn,Ci,Ce,.Nzb, Ncd, Alpha, Beta, Gamma,
vi, 02,03, Dby, valk, xd, Yd, RotA), 1.

plot_lvis_tdry (b, Ci,Ce,Xa, Ya, Nab, Xb, Yb, Xc, Yc, Ncd, Xd, Yd) :- /* before opp edge */

optimal_path ({Xd, ¥d, c(C),Xpl,¥pl|F]),

counterclockwise ([Xd, Xd, c(C), Xpl,¥pllE]),

tell} {user), write(’iv/b (Type 2) bLdry being plotted betwesn edges '),
write (Hab),write(’ and ’),vwrite(lcd),nl,

aooal_point (Xg,Yg), /* 1v/=- (Type 2) bdzy */
tranalate_line(¥b, Yb, Xc, Ye¢, Xd, Yd, Xdtr, Ydt ),
distance (Xd, Yd, Xp), Ypl, Ddp),

asgsert_shortcut_£lag(¥c,Ye, ¥pl, Ypl},
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pach_length([Xpl,YpliP],D1),
distance (Xb, Yb, Xpl, Ypl,D2calc),
add_epsilon_if_zero(D2calc,D2),
distance (Xb, Yb, Xg, ¥g,03),
distance (Xc, ¥c, Xd, Yd, Dcd),
distance (Xa, Ya, Xb, Yb, Dab),
distance (Xa, Ya, Xg, Yg, Dag),
distance (Xa, Ya, Xdtr, Ydtr, Dadtr),
distance (Xa, Ya, Xpl, Ypl, Dpla),
Cosl is (Dcd*2+bab”*2-Dadtr~2)/(2*Dcd*Dab),
arccos {Cosl,Alphshbs),
sign_of_Alpha(Alphaibs, Xa, Ya, Xb, ¥Yb, X<, Yc, Xd, Yd,Alpha),
Cos2 is (D372iDab”*2-Dag”2)/(2*D3*Dab),
arccos (Cos2, Beta),
Cos3 is (D2~2+Dab”~2-Dpla~2)/(2*02*Dab),
arccos (Coa3, Gamma),
compute_angle_of_rotation(Xd, Yd, Xc, Yc, RotA),
connected (Xa, Ya, Xb, Yb, Xc, Yc, Xd, ¥d, Conn),
/* changed Xc,Ye for Xpl,Ypl */
plot_lvis bdry2(befoxre,Conn,Ci,Ce,Nab,Ncd, Alpha, Beta, Gaimz,
Dp1,D2,D3,Dag,Dab, Xpl, Ypl,RotA},!.

plot_lvis bdry(a,Ci,Ce,Xa, Ya, Nab, Xb, Yb, Xc, Yc,Ned, Xd, ¥d) :~ /* after opp edge */
optimal_path((Xc, Yc,c(C),Xpl,¥pl|P}),
clockwise ([Xc,Yc,c(C),Xpl,Ypl|P])), /* discriminates btwn-OP’s */

/* in opposite directions from opp pt. */
tell (ucer), write(’1lv/a (Type 2) bdry being plotted between edges '),
write (Nab),write(’ and ’),write(Ncd),nl,
goal_point (Xg, ¥g), /* 1v/~ (Type 2) bdry */
translate_line(Xa,Ya,Xd, Yd,Xc, Yc, Xctr, Yctr),
distance (Xc, Yc, Xpl, Ypl,Dcp),
assert_shortcut_f£flag(xd,¥d,Xpl,Ypl),
path_length({Xpl,¥pl|Pj,Dl),
distance (Xa, Ya,Xpl,Ypl,D2calc),
add_epsilon_if zero(D2calc,D2),
distance (Xa, Ya, Xg, Yg,D3),
distance (Xc, ¥c, Xd, xd, Dcd),
distance (Xa, Ya,Xb, 2b, Dab),
distance (Xb, ¥b, Xg, Yg, Dbg),
distance (Xb, Yb,Xctr, Yctr,bbetx),
distance (Xb, Yb, Xpl, Ypl,Dpl%h),
Cosl is (Dcd"~2+Dab”2-Dbctr+2)/(2*Dcd*Dab),
arccos {Cosl,AlphaAbs),
sign_of_ Alpha(AlphaAbs,Xb, Yb, Xa, Ya, Xd, Yd, Xc, Yc, Alpha),
Cos2 is (D3"~2+Dab”2~Dbg*2)/ (2*D3*Lab),
arccos (Cos2,Beta),
Cos3 is (D2”~24Dab”*2-Dplb~2)/ (2*D2*Dab),
arccos (Cos3,Gamma),
compute angle_of_rotation(xd, Yd, Xc,¥c,Roth),
connected (Xa, Ya, Xb, ¥b, Xc, Ye, Xd, Yd, Cenn) ,
/* changed Xd,Yd for Xpl,Ypl (why Xd,Yd??7?) */
plot_lvis_bdry2(af'.er,Conn,Ci,Ce,Nab,Ncd, Alpha,Betas,Gamma,
Dp1,02, D3, Dbg, Dab, Xpl, ¥pl,RotA), !.
/* PlOt__IViS_bdry(__'_'_l_'_r_l_'__o_l_r_'_l_) = 1. */

plot_1lvis bdry2(before,Conn,Ci,Ce,t1,H2,A,B,G,D1,D2,D3,Dag, Dab, V2, Vy, RotAngle) :~
sbolish (bdry, 1),
aboliatli(done 0)
ahslish(thetal,l),
cale_ivis_bdry(Ci,Ce,A,B,G,D1,D2,D3,Dag,Dab,Vx,Vy),
rotate bdry (RotAngle),
remove_last_bdry coord if disconnected(Conn),
bdry (Bdzy),
reverse_path_list (Bdry, RevBdry),
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truncate_off_map(Redezy,rinalery),

asse:t(initbdry([Nl,NZ),rinale:y)),
/* tell (bdry out),write(’ Type 2 ), nl,

write_to bdny file (bdry,Bdry),.

output to_figure_file, */

1

plot_lvis_bdty2!aiter,Conn,Ci,Ce,Nl,H2,A,B,G,n1,DZ,D3,Dbg,Dab,Vx,Vy,RotAngle):-

abolish (bdry, 1},
abolish(done,0),
abolish(thetal,1),
calc_lvin_bdxy(Ci,Ce,A,B,G,Dl,DZ,D3,Dbg,Dab,Vx,Vy),
invert_ bdry,
rotate_bdry (RotAngle),
remove_last_bdry_coord_if_disconnected(Conn},
bdry (Bdry),
reverse_path _list (Bdry, RevBdry),
truncate_off map(Redery,Finalezy),
asse:t(in;tbdzy((“l N2),FinalBdry)),

/* tell (bdry_out),write(’ Type 2-inv '},nl,
wzite_to_bdry_tile(bd:y,Bdry),
output_to_figure file, */

calc_lvis_bdry(Ci,Ce,A,B,G,01,D2,D3,Dag,Dab, Vx,Vy) :=
assert {(bdry ((Vx,Vy])),
maxX (Xtlax) , minX(¥Min),
LargeNumber is ({(XMax - XMin)*100,
assert (sc_bdry_ pt_dist (LargeNumber)),
CostRatio is Ce/Ci,
Tc is asin(CostRatio),
get_tlmin(Dag,Dab,Dd3,Timin),
get_tlmax (B, Tlmax),
precision(Precision),
DelTl is (Timax-Tlmin)/Precision,
Tiinit is Timax + DelTl,
assert (thetal (Tlinit)),
retract (thetal (Tlpcev)),
Tl is Tiprev - DelTl,
T1 >= Tlmin,
assert (thetal(T1)),
calc_lvis_pdzy_pt(Tc,h,B,G,Dl,DZ,D3,T1,x1,x2),
store_lvis_results(X1,X2,Tc,Vx,Vy), fail,
calc_lvis bdry( . ’ v v s e 0 e ) 2

aboliah(sc bdry pt dist,1), !.

get_timin(Dag,Dab,D3,Timir) :-

pi(ri),

Cosl is (Pag”24Dab”2-D372)/(2*Dag*Dab),

arccos (Cosl.Timinplus9C),

Timin is Tlminplus%0 - Pi/2, !.
get_tlmax(B,Tlmax) Hd

pi(Fri),

HinetyminusB is FPi/2 - B,

Timax is Hinetyminush, !.

calc_lvis_bdry_pt (Tec,A,B,G,D1,02,D3,T1,X%1,¥2) :-
T2 is asin(sin(Tl)*sin(Tc)),
TlplusB is T1 + B,
TcplusAminusT2 is Tc + A - T2,
T2minusA is T2 - A,
T2minusG is T2 ~ G,
Fl is sin(A) -~ #os(T2)*3in(Tc),
X2 ia (=D1*sin{Tc)*cos(T2) *cos (T2minusA)
4D2* {coa (T2minugd) *sin (G) ~cog {T2minusG) “Fl)




4D3* (cos(T2) /cos{T1}V*
(2in(B) *sin(Tc) *cos (T2mirusi) +cos (TlplusB) *F1)}
/ (9in(TcplusAminuaT2) *r1
+cos(T2minush) * (cos (Tc+h)+cos(T2))),
X1 is ~X2*(sin(TcplusAminusT2)/cos{TZ2minusA})
-D2* (cos (T2minusG) /cos (T2minusa) )
+D3* (cos (T2) *cos (T1plusB) / {cos (T1) *cos (T2minusA))), !.

translate line(Xref,Yref, X1,Y1,X2,Y2,X2trans, Y2trans) :~
DelY is X1-Xref,
DelY is Yl1-Yref,
X2trany is X2 - DelX,
Y2trans is Y2 - Dely, I,

next_to_last_pt([X,Y,Xlast, Ylast], [X,Y]).
next_to_last_pt ([X1,Y1IR], (X, ¥]) :-
next_to_last_pt (R, [X,Y]), !.

store_lvis_results(X1,X2,Tc,Vx,Vy) :~
not {shortcut(_, ,Vx,Vy)),
Xbdry is Vx - X1 - X2+sin(Tc),
Ybdry is Vy + X2*cos(Tc),
retract (bdry (BList)),
assert (bdry ([Xbdry, YbdrylBList})), !.

stere_lvis_result_(X1,X2,Tc,Vx,Vy} - /* The effect of rules 2 § 3 */
shortcut (_,_,Vx,Vy), /* is to exclude the initial +/
Xbdry is Vx - X1 - X2*sin(Tc), /* portion of a bdry which */
Ybdry is Vy + X2*cos(Tc), /* starts at a s/c pt, as long*/
distance (Xbdry, Ybdry, Vx, Vy, Dnew), /* as the bdry is coming back */
sc_bdry pt_dist(bold), /* toward the s/c pt, and */
Dnew >= Dold, /* include the later porticn */
retract (sc_bdry_pt_dist (Dold)), /* as it goes away from it, */
assert (sc_bdry -pt_dist (Dnew)), /* since thetanax is calculated*/
retract (bdry (BList)), /* for the non-g/c case and is*/

assert (bdry ([Xbdry, YbdrylBList}))), !. /* too larxge for the s/c case.*/
steore_lvis_results(Xl,X2,Tc,Vx,Vy) :-

shortcut (_, ,Vx=,Vy),

Xbdry is Vx - X1 - X2*sin(Tc),

Ybdry is Vy + X2*cos(Tc),

distance (Xbdry, Ybdry,Vx, Vy,Dnew),

retract (sc_bdry pt_dist(Dold)),

Dnew < Dold,

assert (sc_bdry pt_dist (Dnew)}), !.

/* 1f edg> AB is parallel to CD, AlphaAbs will be 0, so Alpha is 0. */
sign_of_Alpha(0,Xa,Ya,Xb,Yb, Xc, Yc, Xd, Yd, 0) .
/* 1f AB intersects CD on the R-side of AB, Alpha is positive. */
sign_of Alpha(Alphahbs,Xa,¥a,Xt, Yb, Xc,Yc,Xd, Xd, Alphaibs) :-
line_intecrsection(Xa, Ys,Xb, Yb, Xc, Xc, Xd, ¥d, Xi,¥1),
digtanne (Xi,¥i,Xa,Ya,Dia),
distanca (Xi,Yi,Xb, Yb,Dib),
Dia >= Dibh,
/* Otherwine, AR iantersects CD on the A-side of AB and Alpha is negative. */
sign_of_ Alpha(Alphahba,Xa, Ya, ®b, Yb, %, Yc, %d, ¥d, ~Alphahbs} .

/* 1f %n0, return a slightly positive value, else leave X unchanged */

add_epailon if rero{0,0,00081},

add_epsilon_ifZ:cro(x.x).

/* teturns Conn = conn if thie two line segments arxe connected, */
/* &nd Conn »= diyc otherwise. */

connected (¥s, Ya, ¥b, Yb, Xz, Ye, ¥a, Ya, conn) .,

connected (Xa, Ya, Xk, tb, Xb, Yb, ¥4, Yd, 2onn) .
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connected (Xa, Ya, Xb, Yh, X2, Ya, Xd, ¥d, conn) .
connected (Xa, Ya, Xb, Yb, Xc, Y¢, Xb, ¥b, conn) .
connectad (Xa, Ya, Xb, ¥b, X¢, Yc, Xd, Yd, disz) .

/* 1f the two edges are not connected, the first point in the */
/* Bdry list is not part of the boundary, but only there to */
/* specify the point about which to xotate. */
remove_last bdry coord_if_ disconnected(conn}.
remove “1ast _bdry_ coord if dx-connectcd(dxsc) Bl
rﬂtracl(bdry(adzy)),
reverye path list (Bdry, [X, Y|ReversedBdry)),
reverse _path_list (ReversedBdry, RevisedBdry},
assert (bdry (Revisedddry)) .

/.QOO00..0.0.t‘.btﬁl.i'.ﬁﬁﬁﬁﬂl.OQQQQ".QQQOQQ.ﬁQ..Gﬁ'..'ﬁ".’QQ"..Q.QQQQO..O
*

* Plot Ovis boundaries, betwveen two hidden edges.

-

* Updated 12 Jan 89.

*/

plot_Ovis bdry(b,b,Ci,Ce,Xa, Ya, Nab, Xb, Yb, Xc, Ye, Ncd, Xd, Yd) :-

tell (user}, /* 'before” compared with ‘before’

write (' Uv/u(b) (Type 3) bdry being plotted between edges ),
write(Nab),write(’ and ’),wrxite(Ncd),nl,

abolish(bdry,1),

optimal_path({[xd, ¥d,c(Ca),¥pl, YpLliOPpl]},
counterclockwise ((Xd, ¥d, c(Ca) , Xpl,XpllOFpPl]},
path_length((Xpl,Ypl|OPpl],Dplg),

optima)._path([Xb, ¥b,c(Cb), Xp3, Yp3|OPp3}),
path_length([¥p3,¥p3]0Fp3]},D1),

D2 is pply - DI,

distance (%a, Ya, Xb, ¥b, Dab),

djiatance {¥a, Ya, ¥pl, ¥Xpi,03),

distance (Xb, Yb, Xpl, ¥p1, Dbpl),

distance (Xd, Yd, Xpl, ¥pl,Ddpl) .

distance {Xa, Ya, Xd, Yd, Dad),

distance (Xc, Yc, Xd, Yd, Dcd} ,

distance (Xp3,Yp3,¥a,¥3,2),

Cosl is (D3424Dab”*2-Dbpl1°2)/(2#D34Dab),

arceos (Cosl, ),

Cos2 ia (Ddpl1~2tp3-2-Dad”2)/(2*Ddpl¢D3}),

arccos (Cos2,PiminusBeta},

B is ri - Piminushete,

Tc is asin{Ce/Ci),

cemput.e_angle_of_ rotation(Xd, ¥d, ¥c,¥Yc,RotAnyle),

cale bdry pt vaau(h,B,Tc,Xpl Ypl1,%,01,02,D3,0,X2hdry, Y2bdzy),
cal«_bdry_pt_Ov*sM(n B,Tc, ¥pl,¥pl,Z,01,D02,D3,0cd, Zibdey, Ylbdzy),
abolish (Mlry,1),

aggert (bdry ({X1bdry, Y1lbdry, X2bdry, ¥2bdry, Xpl, Ypl}}),
rotate2 bdry (RetAngle),

brry (%1, ¥1,%2,¥2}),

correct_error_in_conn_eddes (Xb, YU, X, Yo, 4pl, ¥pl, X2, ¥2, ¥2¢, ¥21),
aasnr'(initbd:y(l"ab,chl,lx2:,¥2r,hl Yi))), .

viol Dvix_Priryia,a,c,Ce, %a, Ya, Hob, Xb, Yb, Xc, Yo, Hed, Xd, Yd)  :-
tell {user), /* Tafter’ compared with "after’
write(’Ov/ii(a) (Type 3) bdry being plotted between edges '),
write(abi,write(’ ang ’),write(lcd),nl,
abolishibdry, 1),
optimal path(|¥%e, ¥Ye,c(Cc), ¥p3, Yp3lOFp3}),
path_lenath({Xp3, Yp3lorp3},nly,
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optimal_path([Xa,Ya,c(C),Xpl,YpllOPpl]),
clockwise(|Xa,Ya,c(C),Xpl,¥pl|OFpl)),
path_length((Xpl,¥YpliCepl],Dplg),

D2 is Dplg - DI,

distance (Xa, Ya, Xb, Yb, Dab),

distance (Xd, Yd, X¥pl,¥Ypl,D3),

distance (Xa, Ya,Xpl,¥pl,Dapl),

distance(Xc, Yc, Xpl, ¥pl,Dcpl),

distance (%a, Ya, Xd, ¥d, Dad),

distance(Xa, Y3, Xb, Yb, Dab),

distance (Xc, Yc, Xd, Yd, Dcd) ,

distsnce (Xp3,Yp3,Xd, ¥d, 2),

pi(Fi),

Cosl is (D3°2#Dcd”2-D¢pl~2)/(24D3*Ded),

arccos (Cosl,A),

Cos2 is (Dapl~24D3*2-pad*~2)/(2*Dapl*D3),

arccos (Cos2, PiminusBeta),

B is Pi - PiminusBeta,

Tc is asin(Ce/Ci),

compute_angle_of rotation(Xb,Yb,Xu,Ya,RotAngle),

calc_bdry pt_OvisM(a,B,Tc,Xpl,¥pl,Z,D1,02,D3,0,X1bdry, Y1bdry),
calc_bd:y_pt_OvisH(A,B,Tc,Xpl,!pl,z,Dl,D2,03,Dab,x2bdry,¥2bd:y),
abclish(bdry, 1),

assert (bdry ([X2bdry, Y2bdry, X1bdry, Ylbdry, Xpl,¥Ypl])),
invert_bdry,

rotate2 bdry(RotAngle),

bdry ({X1,¥1,%X2.¥2}),

correct_errox_ in conn_edges (Xb, Yb, Xc, Yc, Xpl, Ypl, X2,Y¥2, ¥2r, Y2r),
asshzt(initbdry([Hab,NCd) {X2z,¥2r,X1,Y1})), 1.

plot_Ovis_bdry(b,a,Ci.Ce, Xa, Ya,Nab, Xb, Yb, Xc, Y¢, Ncd, Xd, Yd) :-
tell (user), /* ‘before’ compared with ’afier’ */
write (Ov/D (Type 4} bdry being plotted between edges ‘),
write (Nab),write(’ and ’),write(licd),nl,
abolish (bdry,1},
optimal path([Xb,Yb,c(Cl),Xpl,¥pllOPPl]),
counterclockwise ([Xb, Yb,c{C1),Xpl,Ypl|OPpl]),
path_length((Xp1, ¥pl|OPpl},Dl),
optimal_path((Xc, Yc,c(C2),Xp2,Yp2l0PpP2]),
clockwise ([Xc, Ye, Cc(C2),Xp2,¥p2|0OPp2}),
path_length((Xp2, Yp2|OPp2]},D2},
not (same (D1,D2)),
distance (%pl, ¥Ypl, ¥%p2, ¥p2,23),
distance (Xc, Yc, Xpl, Ypl,Depl),
distance (Xc, Yc, X02, Yp:2,Dcp2),
distance (Xb, Yb, ¥pl, Ypl, Dbpl),
distance (¥b, Yh, ¥p2,Yp2,Dbp2),
pi(pi},
Coal {3 (D3~2iDcp2”2-Dcpl”~2)/(2*D3%Depl),
urccos (Cosl,Piover2plusilpha),
A is FioverZplushlpha - (Fi/2),
Cos2 in (D3+24Dbpl~2-Dhp2~2) ./ (2°D3*Dbpl),
arccos(Cos2,Piover2plugsbeta),
B ias riover2plusBeta - (P1/2),
Te i asin(Ce/Ci),
compute_angle of_rotation(Xa,Ya,Xb, Yb, RotAngle),
calc bdrv_pt_ Ouan(A,B Te, %pl, Ypl,D1,D02,D3,0,X2bdry, Y2bdry),

Fale hN'" rt ““‘"(5,9,7-,n|;,;p;,u;,u&,ua,unpz,hxbﬂ:),XiDury),
aboliah(hd:y.l),

asacct {bdry ({X1bdry, Y1bhdey, X2bdry, Y2bdry, Xpl, ¥Ypll))),
invert _bdry,

rotate2 bdry (RotAngle),

bdry ([%1,Y1,%2,Y2)),

correct errer in_opp_edue (Xb, Yb, %¢, Yc, X1, Y1, X1r, Y11},




assert (initbdry ([Nab, Ned), IX1r, ¥Y1r,X2,¥2))), !.

plo\._!)vis_bdzy(, Vbt bbbttt st ) ™

—tfemt D L LT L

tell (user), write!’ Bdry does not exist.’),nl, !.

calc_bdry pt_OvisD(A,B,Tc,Xo,Yo,D1,D2,D3,X1,X,Y) :~
TcplusA is Tc + A,
Fl is sin(A) + cos{Tcplush)*sin(Tc),
Tl is cos(Tc)*(sin(B)~-sin(Tc)*cos(TcplusA)) + cos(TciA+B)*71l,
T2 is cos(Tc) - sin(Tcplush)*Fl,
T3 is cos{TcplusA})*cos(Tc)*sin(Tc),
Dencm is cos(TcplusA) *cos (Tc) tcos (TctB) dcas (Tc) ~sin(2+TctA+8;] *F1,
X2 is (X1*T1 4 D3*T2 + (D2-D1)413) / Denom,
X is Xo - (X14X22sin(Tc)),
Y is Yo -~ X2*cos(Tc), !.

calc_bdry pt_OvisM(A,B,Tc, Xo, Yo, 2,D1,D2,D3,X1,X,¥; :-
Tl is sin(A+B)+sin(Tc)*cos(Tc+A+B)-cos(Tc) Asin(Tc),
T2 is D3*(sin(A) tsin(Tc) *cos(Tc+A)),
T3 is D2*cos(Tc) *sin(Tc),
T4 is Z*sin{Tc)*cos(Tc),
TS is cos(Tc)-cos(Tc-A-B)+sin(Tc)*sin(A+B),
X2 is (X1*T1 + T2 -~ T3 - T4)/75;
X is Xo - (X1X2*sin(Tc)),
Y is Yo + X2*cos(Tc), !.

/* 1f edyes are connected then pt B = pt C and bdry */

/* should start exactly at pt Fl. */
cotzeét_e:zoz_in_conn_gdges(Xb,Yb,xb,Yb,Xpl,Ypl,_,_,Xpl,Ypl).
/* 1f edges are not connected use the */ .

/* bdry point as calculated. */

/* 1f edges are part of the opposite edge, then */

/* bdry should start exactly at the opposite point. */

correct_error_in_opp_edge (Xb, Yb, Xc,¥c,_, _, Xopp, Yopp) :-
opposite_point_minus (Xb, Yb),
opposite_point_plus(Xc, Yc),
opposite point (Xopp, Yopp) .

/* 1f not, then leave start of bdry unchanged. */

correct_error_in_opp_edge(_, ,_,_.X, ¥, X, Y).

/Qﬁhhﬁhbhﬁihhﬁhﬁhﬁhﬁ.hl.ﬁﬁﬁﬁﬁﬁhﬁﬁﬁﬁ'ﬁﬁiﬁlﬁkﬁﬁtﬂkﬂt*l.hﬂﬁ.kﬁ.Aﬁﬁﬁﬁhhﬁﬁlﬂhlﬁi‘
*

plotoebdry computes IICA lInterior Oppousite-Edge Boundaries (Type 5)
Assunes no shortcutting!

L3
*
L4
*  Updated 12 Jan 89.
*
»

/

plotoebdry(Ci,Ce, Xa, Ya,%b,¥h) :-
plotoehdry (Ci, Ce, Xa, Ya, ¥b, b, B) .

plotoebdry (Ci,Ce, Xa, Ya, Xb, Yb, Bdry) :-
optimal_path({(¥b,¥b]|_J,p1),
optimsl_path((Xa, ¥Yal|_},D2),
distance (Xa, Ya, ¥b, Yb,DJ),
compute_angle_of_rotationiXb, Yb,Xa,Ya, dothAngle),
plot2oehdry (Ci,Ce,D1,D2, D3, Xb, Yk, RotAngle, Bdry),

/* tell(user),write({Xa,Ya,%Xb,¥b}),nl,*/

]
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plotZoebdry(IntCost,ExtcOst,Dl,DZ,DB,Vz,Vy,Angla,Rede:y) te
initialize_fots,
tell (user), nl,nl,
J* write(HCA Int Opp-Edge (Type 5) bdry being plotted for edge ’), */
Tc is asin(ExtCost/IntCost),
calc_oebd:y_pts(Tc,DI,DZ,Da,Vx,Vy,Angle),
rotate_bdry (Angle),
retract (bdry (Bdxy)),
zemove_last_pt(Bd:y,Redery),
t:uncate_pfi_map(Rede:y,Finalery),
assett(inltbd:y(oe,rinalbdxy)),
/* tell (bdry cut),write(” Type 5 ’),n),
wzite_to_bd:y_file(bdry,Redezy),

output_to figure_file, */

1

calc_oebdry_pts(Tc,Dl,DZ,D3,Vx,Vy,hngle) He
X11 is (D34p2-D1)/2,
X22 is X11/sin{(Tc),
Xa is vx + x11,
Ya is vy,
Xb is vx + X22*sin(Tc),
Yb is Vy 4 X%22%coa(Tc),
assezt{bd:y((Xa,Ya,Xb,Yb,Vx,Vyl)), !.

initialize_fors -
abolish(bdry,1), !,

/* First check -wkether bdry starts on the map. I¢ so, call trxunc,.2 */
/* if not, csll trunc..3 +/
t:uncate_off_map([Xl,Yl,X,YIB],BZ) H

minX(MlnX),minY(MinY),

maxX (MaxX), maxY (MaxY),

DelX is MaxX - MinX,

X1 > Minx, X1 < Max¥, Y1 > MinY, Y1 < MaxY, /* starts ON the map.*/
truncate_pff_mapz([x1,¥1,x,YiB],B2), .
truncate_off map((X1,Y1,X,Y[B],B2) :~ /* startas OFF the map.*/
ttuncate_pff_pap3((Xl,Yl,x,YlB],BZ), .
tzuncate_o(f_mapz([xl,Yl,x,YlB),IXI,YIIBZI) - /* Assumes that Bdry */
minX (MinX),minY (Miny), /* starts OH the map.*/

maxX (MaxX), maxY (Maxy),

Delxt is Maxx ~ Min¥,

BinX2 is MinX ~ 0.1%pel¥,

MinY2 is Miny ~ 0.1*pelX,

MaxX2 is Haxx 4 D.1*Delx,

BaxY2 is Hax¥ | 0.1+pely,

X > Minx2, x < bizxX2, Y > MinY2, Y < MaxYz,

truncate off map2([X,Y|B),B2), !.
tzuncate_ntf_mapZ(lxl,Yl,X,YlB),r(xl,Yl,X,Y]) i~ 1.
t:uncate_off_mapZ((x,Y],[X,Y]) = 1,
truncate“pft_nap3([xl,?l,x,r],(xl,Yl,x,Y]). /* Bdry is entirely off the map */

/* except perhaps for the last pt. */

t:uncatq_oft_mapB(IXJ,YI,X,?lBJ,82) e /* Bdry starts off the map.*/

truncnte_ott_map(lx,YlB],BZ), !.

agsert _shorbteut_flag(fv, Yv,%v, Yv) .
assc:t_sho:tcuk_flag:Xv,Yv,Xpl,Yp]) :=-
assext(shortcut (Xv,Yv,Xpl,¥pl)), !.

clnckwise(le,Yl,c(C),xi,YiIOP)) -
region_eliat (R),
gstnxfcu_edgc(xl,fl,n,IXa,Ya,Xb,Yb;),
on_ray (X4, ¥i,%1,¥1,%L,¥h), 1,

countezclockwise(lrl,Yl,c(C),xl.Yilorl) t=
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region_clist (R}, 7
get_XYccw_edge {X1, Y1, R, [Xa, Ya,%b,Yb]),
on_ray (%i, Yi, X1,Y1,Xa,Ya), 1!,

get_Xch_edge(Xl,Yl,[Xa,Ya,_,_,Xb,YbIR],IXa,Ya,xb,!b]) -
on_ray(Xl,Y1,Xb,Yh,Xa,Yay, !.

get_xrcw_edge(XI,Il,(Xa,Ya,_,_,Xb,!blEi;zdge) HE
get_XYcw_edge (X1,Y1,R,Edge), !.

get_xrccw_edge(XI,Yl,IXa,Ya,_,_,Xb,YbiR],[Xa,Ya,xb,!b]) o
on_ray{Xl,Yl,Xa,Ya,Xb,¥b), !,

get_chcwyedge(xl,!l,IXa,Ya,_,_,Xb,!biRl,Bdge) Had
get_XYccw_edge (X1, Y1,R,Edge), !.
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/l.ﬁﬁ..b..ﬁl’iﬁlﬁ!ﬁiﬁtﬁﬁﬂ.ﬂiﬁﬂhﬁiQ.ﬂﬁﬁﬁﬂﬂ*ﬁﬁ‘ﬂ‘kﬁ‘ﬁ*ﬁﬁ.kﬁhﬁ‘ﬁ'ﬁ&ﬁﬁhlﬂ
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’

File "boundary_jocin" or "bj"
Updated 30 Jan 89

»
L]
*
*
* "bdry_join" truncates boundaries and joins them tcgether into

* a network of the active boundaries inside a homo’ :neous-cost region.
RAAAALRAARARRAARAAARAARAAARARAAARAARARRAAAAARARARAAARRARAAARAAAARNARARALNAAR
QQQQQ.ﬂihﬁﬁ....tﬁﬁﬁtihhﬁﬂlfﬁiﬂﬂtﬁﬂﬂktﬁﬁhhﬁ.ﬁﬁﬁ*ii.Q.ﬁﬁnﬂtﬁﬁat*ﬂ‘ﬁ.tﬁ/

/lﬁtt'ﬂﬁﬁ.ﬁfﬂnﬂﬁﬁﬁ.#ﬁ‘ﬁﬁ*ﬂhhﬂ‘.ﬂﬁﬁﬂiﬁﬂﬁ*ﬁi*ﬁﬁﬁ*ﬂhﬂihﬂﬂﬁﬁﬁﬁﬁﬁﬂ'ﬁh*tﬁﬁﬁ/
/0'0.0’01000..!'.""‘ Top_level pzedicate ﬁﬁﬁﬁ...ﬁﬂ’ﬂﬁﬁﬁkﬂﬁﬁ.‘ﬁﬁﬁﬁ/
,h.ﬂAﬁ..bahh.ﬂnOOQAOQ.AAO&AQhniQQQGQAIQQQQQAQAAQQ.QD‘.ﬁ.‘ﬁﬂﬁﬁﬁﬂhbﬁhhﬁ/

bdty join :-
initialize,
first_level_bdrys(al),
assert (old_bdry set({])),
assert (current_bdry_ set (Al)),
retract (current_bdry set {Acux}), /* start of while-not-done loop ™/
retract_cut{old_bdry_set {Aold)),
not (same_set (Acur,Aold)),
assert (old_bdry_set (Acur)),
next_level bdrys(Acurz,Anev;,
essert (current_bdzy set (Anew)),
done (Anew), /* end of while-nct-done locp */
get_£inal_bdrys(Afinal),
ocutput (Afinal),
cleanup, halt, !.
bdry_join :-
tell (userx), nl,nl,
write (/ Checking for center shortcutting’).nl,nl,
elim_incomplete trees,
get_final bdrys(afinal),
bdry_edge_intersections(afinal, BEI},
find_exact_opposite_pt (BEL,F),
recurse_unless_done(F),
output (Afinal),
cleanup, halt, !,
bdry join :-
tell (user), nl,nl,
vrite (’ ERROR in ’’bdry~join’’: doesn’’t converge’),nl,nl, !,

/lbbbOGQO0000.00'0’9’.!#‘.00'hﬁﬁOQDQQQQQQOQ‘QOﬂl‘ﬂﬁtﬁﬂﬁﬂklﬁﬁﬂﬁﬁﬁﬂﬁﬂlﬁ/

/rsresrhssssarnssnanss gecond-level predicabtes Asasrdirstrnsssnsais/
/0..0.0.6450‘0“.....l"““ﬁ“Q.‘..O.ﬁ.‘..‘.ﬁ“ﬁ...Oﬁ....“ﬁ.ﬁ‘...b.,’

initislize :-
tell (uger),
nl,nl, write(’Boundariea being joined:’), nl,nl,

ahnlishicte 11,

agsart{ctr(l)).

firat_level bdrys(n2) :-
number_of_edges (i),
index_list_ftod (1,4, IndexListQ),
cona (IndexLiotd, {(1,2)), Indexbist),

2517




assert (indices(IndexbList)),
first lavel bdrysl(Al,N),
order_indices(Al,A2), !.

next_level_bd:ys(hl,a3) e
reset (A1, A2),
propogate_next_level bdrys(A2),
gst_active bdry set (A3), !.

done{A) :-
one_bdry tree(A),
tell(use:),nl,n”,nl,

write to screent’ DCNE - single bdry-tree’),nl,nl,nl, !.

get_final bdrys(A) :-
get tbdrys(n), !.

bdry_edge_intersectiono{l).(]).

bdry edge_intersecticns{((((%,J],B,LPt}IL]},({(X,J),B,LPL]|BEL])

edge_bdry_ intersection(K,lI, J}),Let),

bdry_edge_intersections(L,BEI), !.
bdry_edge_ intersections{[([I,9],B,Lbt]|L],BEI)

bdry_edye_intersections(L,BEI), !.

elim incomplete_trees :-
tree(!1,J}],L,R),
not (complete tree(tree((1,J},L,R))),

eliminate_tree tbdrys(tree({I,J},L,R)),

fail, !.
elim_incomplete txces :-~ [,

find exact_opposii s _pt (BEL,P) :~-
find_exact_opposite_ptl (BEI),
opposite_edge (OE),
new_opp_pt (OE,OE,P), !.
find_exact_opposite_ptl((]).

® -
.

find_exact_opposite_ptl1((((ZX,J),8, [LX,LY]]|BEI)) :~

optimal_psth({LX,LY,c(C),%2,X2]I0P]),

update_opp _edge(I,Jd, [LX,LY,c(C),X2,Y2|0F]),

find_exact_opposite_ptl(BEI), !.

recurse_unlesy don2{{Xopp2, Yopp2}) :-
not(fxtst pass_done),
opposite point(Xoppl Yoppl},

not(s*me(lﬁoppl Yoppl}, [Xopp2, Yopp2]))),

retrast (opposite_point (Xoppl, Yoppl)),
assert {opposite_point-(Xopp2, Yopp2)},
asse:zt (fizot_pass done),

cleanup2,
bg2, !.
recurse unless_done([Xopp2,Yopp2)) :-
tell (user},nl, nl,nl,
write_to_screen(’ pONE -~ Finished Second Pass’},nl,nl,nl, |. *

output {A) :-
wrire_heading,
write_bdryas to_file(hca opm,A), nl, l.

cleanup -~
abolisli(ctr, 1},
aboliah (tbdrey, S),
shclish(curzent_behy_aset, 1),
abolish(bdry list,1),
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abolish(odry_intersection, §),

abolisk (initbdry, 2),

abolish(tree,3),

tell (user),

nl,nl},

write (/Boundary generation complete: results in file ’’hca_opm’’’),

nl,nl, 1!, -
cleanup2 :-

abolish{ctr,1),

abolish(thdry,5),

abolish(currenc_bdry_ set,1),

abolish(bdry_list,1),

abolish(initbdry,2),

abolish(region_elist,1),

abolish(pseudo_optimal_path,1),

abclish(tree,3),

tell (user),

nl,nl,write{’Pass Two beginning’),nl,nl, !.

/.QQﬂQQtﬁﬁ‘Alﬂ‘ﬁ.ﬂdﬁ*ﬁﬁﬁﬁﬂﬁﬁﬁﬁﬁﬁﬂh*ﬁﬁhnﬁtﬂﬁltﬂﬂ*ﬁﬁ*ﬂﬁ.‘ﬂ.ﬂﬂﬂ’dh‘ﬁtﬁiﬁ/

JArsansnnanns Bipnitializatica® subordinate predicates #AsArrrrsanrasa/
/ﬂﬂ'ihﬁﬂt!ﬁhﬂﬁhﬂﬂ.ﬁl..ﬂﬁﬂAﬂﬁﬂﬁﬁﬁﬁﬁﬁﬁtﬁth.hﬁﬁhﬂﬂﬂ.ﬁh.ﬁ*hﬁﬂ‘sﬂﬁﬂﬁﬁﬁﬁnkﬂ/

/* Assert the points at which bdrys are "anchored’ to the region edges */
assert_anchors :-
number_of_edges(H),
index_list_TtoJ(1,MN, IndexListl),
assext_anchors(IndexList), 1.
assert_anchors(()} :- !.
assert _ancaors([(I,J}IL}) 2~
fujtbdrey(’1,9), [X,¥YIB)),
assert (anchor (¥, Y}),
assert_anchors(L), !.

reset (A, A1} :-
abolish(tbdry,5),
abolish(edge_int_pt,3),
oxdar_indices{A,hnl),
reassert_tbdrys(old,Al,l),
aholish(ctr,1),
assert (ctr(1)),!.

/IAQOOQDAAllﬁh‘hlol‘h.ﬁ4Adhh‘bhﬂ..Oﬂﬁﬁﬂbhhlh.llhﬁ'ﬁﬁh.ﬁl.lﬁ.hlhlllﬁOQ,

[Arsssenses nfirst-1rvel~bdrys" subordinate predicates #rtaxaanrnnn)
/( .0.000AQQ.Qtono0'0.0'.‘00QQ0.0ﬁ..ﬂo’p.......'ﬁiﬁﬁbﬁ'....Qﬁ'ﬂﬂt...ﬂ./

firat_level bdrysl(aA,n) :-
retract (indices (IndexList)),
truncate_lst_level bLdrys{IndexList,l),
retract_all_and_rtn_shortest_tbdrys(ShortBdrys),
matching_palirs(ShortBdrys, PairedBdrys),
bdry_edge_intersections {ShortBdrys, EdgeIntbdrys),
sot _subtraction(EdgelntBdrys,PairedBdrys, EdgelntBdrys2),
cons (Edgelnk:Bdrys2, PairedBdrys, ActiveBdrys),
reassert_thdryn({old, ActivaBdrya 13,
Nminual isa 1 - 1,
not (list_lengtn(ActiveBdrys,tminusl)},
not (1ist_length (ActiveBdrys, 1)),
index list (ActiveBdrys, IndexLl),
set_subtraction(indexList, IndexLl, IndexL2),
/* complemant indexn_list (i, IndexLl, IndexL2), */
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not (same_set (IndexList, IndexL2)), /* If same, no new bdry pairs */
assert (indices(IndexL2)),
first_level bdrysl(A,N), !.
first_level bdrysl(A,N) :-
assert_singles(1,N),
get_thdrys(a), !.

matching _pairs([FirstB|Rest],RevRest) :-
matching_pairsl ({FirstB|Rest),FirstB,RevRest), 1.

matching_pairsi((},_,{)) := !.
matching_pairsl([(IDlast,Blast,LFtfirst]], (IDfirst,Bfirst,LPtfirst],
[(IDlast,Blast,LPtfirst], [IDfirst,Bfirst, LPtfirst]]) :~ 1I.
matching pairsl({{IDlast,Blast,Lftlast)]), [IDfirst,Bfirst,LPtfirst),(])) :~ !.
matching pairsl ([(ID1,B1,LPt1], [1ID2,B2,LPt1]|Rest],Bfirst,
{tIv1,B1,LPt1], [ID2,B2,LPt1]} |RevRest}) :-
matching pairsl (Rest,Bfirst,RezRest), !.
matching pairsl ([B1,B2|Rest],Bfirst,RevRest) :-
matching_pairsl ({B2|Rest],Bfixrst,RevRest), !.

truncate_lot_level bdrxys(([_,_)),n} :- !. /% Base case */
tzuncate lst “level bdrys([[" 11,102,2)7, n) :- /* Last pair of bdrys: */
1nitbd:y([1 N}, (X1,Y1|B1}), /* succends if they intersect. */

initbdry((1,2), [X2,Y21B2}),
bdry_intersection{({x1,¥1{B1]), (X2,¥2|B2], IntPt,Bltxuvnc,B2trunc},
get_counter_and_incxement (CO),
get_counter_. "and _increment (C1),
assezt(tbd:y(new,co,(N,l] Bltrunc, Intbt)),
assert (tbdry (new,C1, [(1,2]),B2trunc, IntPt)},
region_elist (R),
truncate_bdry_and_edges({1i,M]), [X},Y1]|B1},R}),
truncate_lst_level bdrys({(_,_}).N), I.
truncate_lst_level bdrys([(Nminusl, N],{N,1]iRest}, N) :-
Nminusl is N-1, /* Hext to Last pair of bdrys: */
inithdry ({Nminusl,N).{X1,¥Y1IB1}), /* succeeds if they intexsect. */
initbdry([1,N], [X2,Y2]B2]),
bdry intersection((X1,Y1|B1], [X2,¥2]B2],IntPt,Bltrunc, B2trunc),
get_counter_and_increment (CO),
get_counter_and_increment (Clj,
assert (tbhdry (new,CO, [Nminusl, ), Bltrunc, IntPt)),
assert (tbdry (new,C1, [N,1]),B2txunc, IntPt)}),
region_elist (R},
truncate_bdry and_edges((N,lminusl]), [%1,Y1|B1],R),
truncate_lst leval bdrys({{l,1]}]Rest],N), I.
truncate_lst level bd:ys([ll Ji, [3,K]) |Rest]),N) :~ /* Succeeds if bdrys are*/
Initbdey (11,9}, (%1, ¥1181)), /* adjacent and intersect*/
initbdry ({J,K]}, [X2,Y2]B2)),
Ldry_intersection{{X1,Y2]s1), [X2,¥2]E2),IntFt,Bltrunc, B2trunc),
get_counter_and_increment (L0},
gnt_counter_and_increment (C1),
assert (thdry (new,CO, {1,J},Bltrunc, IntPL)),
assert (tbdry (new,Cl, [J, K], B2txrunc, IntFt)),
region_elist (R},
truncate_bdry_and_edges({(I,J], [%1,Y1{81),R),
truncate_lst_level bdrys(([J,K]iRestj,i), !.
truncate_lst_level bdrys({[I,J]), (K, L) |Rest]}, ) :~-

ordered(1,J,11,4J1), /* Recuzses if previous */
initbdey ((11,03), {X1,Y1IB1]), /* adjacent and intersect®/
region_eliiat (R}, /* rules have failed, */

truncate_bdry and _edgesa({I1,J1], {X1,Y1IB1},R),
truncate_lst_ Tevel _bdrys{[[K, L] |Rest], N), |I.

/* Aganrta a tamp thdry which stops at the region edge if inithdry(1,aq) */
/* loternects a region opposite ecdge. Always suceeeds. Alsc asonrta +/
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/* 'edge_bdry_intersection(K, [I,J),[X,Y])’ for each intersection point., */
truncate_bdry and_edges((I,J), {X,¥|B], (%1, ¥1,h(Q),K, X2, Y2}R]) :-
not (bdry_starts_at_edge(I,J,K)),
bdzy_intersection([x,YlB)p[xl,rl,XZ.YZI,Int!t,ntzunc,altzunc),
get_counter_and_increment (CO),
assert (edge_bdry intersection(k, [I,J],IntPt)),
assect (tbdry (temp, CO, {3,J), Btrunc, IntPt)), 1!.
tzuncate_bd:y_and_edges([I,J],(X,YIB],[x1,¥1,_,K,x2,Y2IR]) Hod
truncate _btdry and _edges((I,J}, (¥, YIB},R), !.
truncate bdry_ and_edges({I,J), (X, Y|B],[}) :~ !.

assert_singles(I,N) :- /* 1f any vertex’s lst-level bdry #/
Iplusl is I + 31, /* has not yet bcen generated, do */
Iplusl < N, /* so now. */

thdry (__'__' {I,1plusl) Iy

assert_singles(Iplusl,N), {.
assert_singles(I,N) :-

Iplusl is I + 1,

Iplual < N,

not (tbdry (_,_, [X,Ipiusl),_, )),

initbdry(({I1,1plusl],B),

get_counter_and_increm2nt (Ctr),

assert (tbdcy (new,Ctr, {1, Iplusl),B, {}}),

assert_singles(Iplusi,Nj, !.
assert singles (I, N) :-

Iplusl is I + 1,

Iplusi = N,

tbdry (_, _, IN,1),_,_), !.
assert_singles(i,N) :-

Iplusl is I + 1,

Iplusi = N,

not {tbdrey(_, ,IN,1] I

initbdry((1,M],B),

assert (tbdry(new,Ctr, [B,1],B,(])), !.
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propogate_next_level bdrys((]) :- .
propogate next_level bdrys{([[(I,J]},B1, [LX,LY})IA)) :-

thdry(_,_, K, L), B2, {LX,LY]), /* Previously connected at end */
adjacent_bdrys(1,d,K,L,11,J1,K1,%1),
not (same (11,L1)), /* Hot same bdry */

ordered(I1,L1,12,L2),
nok (tbdey(_, , (12,L2], (LX,LY{_),_)), /* Not previously maserted */
ozdered (11,J1,13,33), /* Use indices in order #/
initbdey([13,33),B1lFull),
ordered(11,L1,14,14),
initbdry((14,14),B12),
hdzy_intersection(Blrull,slz,[Intx,IntY],_,BIZttunc),
within_tolerance (LX,LY, IntX, IntY),
gct*corzecz_pali_of_bd:y:81,82.512,[Lx,LY),BIZt:unc,[x12,2121512co:)),
gat_iast_pt(IXIZ,ZIZIBIZcoz],812x1ast;812Y1&st),
got_counter_and_increment (Cl),

- anse:t(tbd:y(nnw,cl,[I;,LZ],ILX,L¥|512co:J.lBlZXlast,alzvlagh;)),
propogate_next_level bdrys(a), !.

propogate next_level bdry=({((1,9),B,LFt)IA}) :- /* Diszegord bilyy which is +/

propogate _next_level bdrys(a), . /* paired with snother bdry or */
/* intersects a regior edge., ¢/
- propogate_next_level bdrya([([[1,7),B1, [)]IA)) :- /* Disregard single bdry */

propogate _next_level bdrys(n), !.
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get_correct_half_of bdry ({X1,Y1(B1), [X2,Y2]|B2]), 1X12,¥Y12|B12],

{%i,Yi),B12tx, [Xi, Yi}Bl2corr)) :- /* Intersect a line from Bl */
Xltest is Xi+((X1-Xi}/20), /* to B2 drawn just inside their pt of*/
Yitest is Yi+((¥1-Yi)/20), /* intersection, with the new bdry. */
X2test is Xit+((X2~Xxi)/20), /* 1f no intexs, bdry is outside Bl */
Y2test is Yi+((Y2-Yi)/20), /* and B2, so this is correct half. */
not (bdry_intersection_exact ({Xltest, Yitest,X2test,Y2test),Bl2tx, , ,_)).
reverse_path_list (Bl2tr, (_._IBl2corr])), !. /* but reversed. *

~I

get_correct_half of bdry(Bl1,_ ,Bl2,

(xi,!i],_,IEL,YIIBIZOthethalfl) 2 /* Otherwise get the other */
reverse_path_list (B12,B12Rev}, /* half of new bdry. */
bdry_intersection(Bl, B12Rev,_ ,_,Bl2trunc),
reverse_path_list (Bl2trunc, (_,_{Bl2otherhalf}), f.

get_active_bdry_set () :-

tbdry (new, ,({I,J),B1,LFt1),
intersect_with_candidate bdrys(I,J,Bl,LPtl),
fail, !.

get_active_bdry set (n) :-

retract_all and_rtn_shortest_thdrys(ShortBdrys),
while changing_reassert_tbdrys(ShortBdrys,1,_, ),
reset last pts,

get_tbdzys(a), !.

intersect_with_candidate_bdrys(I,J, (X1,Y1]B1],LPt1) :-

get_tbdrylJorJz(r,_, (I,K],B2,LPt2),

rot {same (F, temp)), /* not a temporary bdry */
not (same ([X1,Y1},LP2)}, /* not a child of Bl */
ordered (I, J,11,J1),
ordered(1,X,12,K2),
not (same {{13,J1]), [12,K2))), /* not the same as Bl */

interior_intersection([X1,Y1|Bl),LPt1,B2,L0t2, IntPt,Bltrunc, B2trunc),
not {asserted_tbdry ([12,K2],IntPt)), /*If Bl intersects*/ .
get_counter_and_increment(CO), /* the candidate, then */
assert (tbdry (temp,CO, {12, K2}, B2trunc, IntPt)), /* assert both as temps */
not (asserted_tbdry ({I1,J1},IntPt)), /*if not asserted */

get_counter and_increment (Cl1),

assert (tbdry (temp,Cl, {11,J01},Bltrunc, IntPt)),

fail, !.

intersect_with_candidate_tdrys (I, J, [X1,¥Y1|B1l},LPt1l)} :-

get_tbdryIJorJI(F, ,{J,L},B2,LPt2),

not (same (F, temp) ), /* not a temporary bdry */
not (same ([X1,Y1]),LPt2)), /* not a child of Bl */
ordered(I,,11,01),

ordered(J,L,J2,L27,

not (same ({11,901}, (J2,L2)})), /* not the same as B1 */
interior_intersection((X1i,¥1|Bl),LPt1,B2,LFt2, IntPt,Bltxunc, B2trunc),
not (asserted_tbdry ([J2,L2),IntPt)), /*If Bl intersects*/
get_counter_and_increment (CO), /* the candidate, then */
asaert (thdry (temp,CO, [J2,L2), B2t runc, IntFt)), /* assert both as temps */
not (asaerted_thdry ({I1,J1]),IntPt)), /* if not asserted*/
get_counter_and_increment (Cl),

asaert (Lbdry (temp,Cl, (11,01),Bltrunc, IntPt)),

fail, 1.

interscct_with _candidate_bdrys(1,J, [X1,¥1{B1),LPtl) :~ /* Intersect bdry with */
region_eliat (R), /* region edges. */
tzuncate_bdry_ and_edges((I,J}, [X1,Y1IB1),R), I,

aganrted_thdry ((1,J3),L0t) :- /* thdry is already asserted */
thdry(_,_,11,3),_,LPt), 1.

agserted tudry ((I,Jj,1%i1,Yi1)) :~- /* thdry with appx~ last pt */
thdey(_, . 11,0),_, [%i2,¥42)), /* is airsady asserced */

within_tolerance (Xil, Yi1,Xi2,¥12), |.
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retract_all_and_rtn_shortest_tbdrys([{(I,J),BminD,LPtminD] |Rest]) :-
tbdry{_,_, [1,J), (X, ¥IB), ), /* Retract all IJ bdrys #/
retract_IJ_bdrys(I,J,Bdrys),
get_shortest_tbdry (Bdrys,_, BminD, LPtminD),
retract_all_and_rton shortest_tbdrys(Rest), 1!.
retract_all_and_rtn_shortest tbdrys{{]) :~ %.

retract_IJ_bdrys(1,J, {[(X,Y|B).LPt)|Bdrys]) :~ /* Retract all bdrys with */
retract (tbdry(_, _,11,J), X, ¥YIB},LPt)), /* index I,J, and return */
retract_IJ_bdrys(I,J,Bdrys). /* them in a list */

retract_1J_hdrys{(_, ,[)) := !.

xretract_1J_bdrys(I,J,X,Y, [[{X,YIB),LPt)|Bdrys}) :~ /* Retract all bdrys */

retract (tbdry(_,_, (1,9}, IX,¥IB],LPL)), /* with index I,J which */
retract_IJ_bdrys(1,J,X,Y,Bdzys). /* have same starting pt */
xretract_1J_bdrys{ , ,_,_,l)) = 1. /* & rtn them in a list */

get_shortest tbdry((],100000, , ) :~ !.
get_shortest_tbdry([{B,LPt]{Bdrys], tiewMinD, NewB, HewLPt) :-
path_length(p,D),
get_shortest_tbdry (Bdrys,MinD, BminD, LFtminD),
get_minD_and_B(D,B,LPt,MinD, BminD, LPtminD, NewMinD, NewB, Newl.Ft), !.
get_minD_and;B(D,B,LPtB,MinD,BminD,LPtminD,D,B,LPtB) ¢t~ D < MinD, !.
get_minD_and_B(D,B,LPtB,MinD, BminD, LPtminD,MinD, BminD,LPtminD) :~ !,

while_changing_reassert_tbdrys(Setl,Ctrl,Set2,Ctr2) :-
reassert_connected_tbdrys(Setl,Ctrl,Set2,Ctr2),
not (same _sat (Setl,S~t2}),
while changing reassert tbdrys(Set2,Ctr2, , ), !.
wvhile changing_reassert tbdry-(Setl Ctrl,Set2, ctr2) -
same_set (Setl,Set2), !.
while changing reassert_tbdrys(Setl,Ctrl,Set2,Ctr2) :-
write to_screen{’Errcr in -reassert_tbdrys- ’),nl,!.

reassert_connected_tkdrys([],Ctr, (]),Ctr) :~ !,
reassezt connected_tbdrys(|{(1,J],B, LPt]lActSet] Ctr,InteriorBs,Ctr2) :-
connected |_to_an_anchor((I1,J]},B),
ozde:ed(l J,K,L),
assert (tbdry{oldd,Ctr, (1,J),B,LPL)),
Cplusl is Ctrtl,
reassert _connected_tbdrys (ActSet,Cplusl, InteriorBs,Ctr2).
reassert_connacted tbdrya(([(I,J),B,LPt)|ActSet),Ctr,
(1{1,31,8,LFt} | InteriorBs),Ctr2) :-
reassert connected_tbdrys(ActSet,Ctr, InteriorBs,Ctr2),

connected—to_an_anchor([I,J],BO) e /* Bdry starts at a region edge */
adjacent_edges(I,J), !.

connected_to-an_anchor(|1,J]), (¥1,Y1|B}) :- /* Bdcy starts at last pt of */
tbdry( o (K, L),B2,(x1,Y3]), /* another anchored bdry. */
connected to_an_anchor ([K,5L},B2), !.

connected_tc_an ancLoz((I J), [¥1,¥1|B]) :~ /* Bdry starts at ficst pt of */

tbd:y( es [K L), [X1,Y11B2), ), /* another anchored bdry. */
conneﬂtcd_to_anuancho:((K,L),BZ), 1.
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/* Example ’‘tree’ fact (indented for clarity only - root is at left):

tree((7,7), tree({7,2), tree((7,2], tree((7,11,7()',°(})"),
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teee([1,2],°(17,7()%)),
ree((2,3],°1)7.'1)')),
tree((3,7), tree((3,4]),°L)'," 1)),
tree({4,7), txee({4,5),°1)',"()"),
trec(l5,7],tree({5,6}," (), 1]"),
tree([6,7],°(}", (1"))))).

t7,7)

/ \
/ \
17,3] {3,7)
/ \ /
17.2) (2,3)  (3,4) t4,7)
/ \ /
17,1) (1,2) (4,5) /15,71

{5, 6] 16,7] */

one bdry tree({[[X,J],B,LPt])IA]) :-
abolish(tree,3),
number_of_edges(l),
assert_leaf trees(i,N),
while changing_combine_trees(N),
number_of_trees(NT),
NT == 1, 1.

vhile_changing_combine_trxees(N) :-
abolish (number_of_trees, 1),
assert (number_of trees(N)),
retract (number_of trees(Previr)),
combine_trees(1,M,NT),
assert (number_of_ trees(NT)),
PrevliT == NT, {. /* fails here until no longer changing */

combine_trees(I,N,NumTrees) :-
1 <N,
tree({1,J)],Leftl,Rightl),
tree([J,K], Left2,Right2),
not {same (1,K)),
succeed if_ joined(I,J,K),
retract (tree({1,J),Leftl, Rightl)),
retract (Lree({J,K),Left2,Right2)),
assest (tree((I,K),txee([1,J),Leftl, Rightl),tree{|{J, K], Left2,Right2})),
Iplusl is I 4 1,
combine_trees(Iplusl, N, llumTrees), !.
combine treas(Il,l,NumTrees) :- /* Final case, where tree(|I1,J},,) */
tree({X,J),Leftl, Rightl), /* is combined with txee({J,1],,) */
tree((J,1},Left2, Right2),
not (same (Leftl, Left2)),
succeed _if_ joined(1,J,I), /* TEMP: always jucceeds, Won't always */
retract{tree({1,J),Leftl,Rightl)), /* succeed for center-as/c */
retract (tree({J,1),Left2,Right2)),
assert (tree{(I,1],tree({1,0),Left]l,Rightl),tree({J, I},Left2,Right2))),
count_trees (NumTzees), !.
combine trees(l,N,1) :- /* Last iter. of while-changing loop, */
tree([2,1}),Leftl,Rightl), !. /* where single tree is tree(|1,1},..) */
conbine_tzees(I,N,NwﬁTrees) Hiad
1 <n,
Iplusl is 1 4 1,

combina treosiiplual, i HuRT

ccmbine_t:eesuﬂﬁuNumTrees) Hid
tree((N,J],Leftl,Rightl),
tree({J,k),Left2,Right2),
not {(same (N, K) ),
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succeed if joined(l,J,K),
retract (tree([H,J],Leftl,Rightl)),
retract (tree([J,K],Left2,Right2)),
assert (tree([H,K},tree({ll,J),Leftl, Rightl), tree((J, K}, Left2,Right2))),
count_trees (NunTrees), !.

combine_trees (N, N, HunTrees) :- /* Base case for all but last itexation */
count_trees (NunTrees), !.

count_trees (Huml'rees) :-
abolishicount, ),
assert (count (0)),
tree (_'_l-) .
retract_cut (count (C)),
NumTrees is C 4+ 1,
assert (count (HumTrees)),
fail, .
count_trees(HunTrees) :-
retract (count (HumTxees)), i.

assert_leaf trees(I N} :-
I<n,
Iplusl is I + 1,
assert (tree([X,Iplual}, [},1()}),
assert_leaf trees(Iplusi,n), !.
assert_leal trees(N,l) :-
assext (tree(iN,1),1),1))), !.

/* Succeeds if bdeys 1,5, J,K, and I,K are joined at one point */
succeed it joined(I,J,1).
succeed_if_joined(1,I,J).
succeed_if_ joined(J,I,1).
succeed_if joined(I,J,K) :-
ordered(1,J,11,J1),
tbhdry(_,_, [11,01), {Xij,¥ijiBij), (LXij,LYij]),
ordered(J,K,J2,K2),
thdry (_, _, [92,K2], (Xjk,¥3k183k], (LX5k, LYIK]),
ordexed (I, %, 13,K3),
tbdry (_._, [12,K3]), iXik, ¥ikiIBik], {LXik, LYiK])),
match_3_pts(Xij, ¥ij, LXij, LYij, X5k, Yk, LXK, LY %, Xik, Yik, LXik, LYiK), !.

/* Succeeds if there is a match among any permutation of the three */
/* pairs of points; First check for exact matches: */
mar.ch_3_pt= (Ko Xy _r o %0 ¥e_o_o %, Y, o
match_3_pts(_, %, Y, %Y, _,_, X%, _.
match_3_pts(X,¥,_, IVRENY 75 2 .75 Y
match_B._pt'.s ‘__:__r Xe¥y o _o %, Y, 2%, Y, _,_).
match_3_pts(X,¥, , ,X, ¥, ,_,_, %Y.
match_3_pts(_, X, ¥, %Y, _,_,_._+%X.¥).
mntch_3_pts(x,Y,_,_,_,_,X,Y,_,_,X,Y).
match_3 _ptal_, ,%,Y,_, % ¥,_s_+s%:Y).
/* 1f no exact match, check for approximate matches: */
maLchﬂ!_pLs(Xl,Y!,_,_,XZ,YZ,_,_,XB,Y3,_,_) Hod
within_teolersnee (X1,¥1,%2,Y2),
within_tolerance (¥1,¥1,%3,13),
vithin Lelerance (¥2,¥2,¥%3,v3), !.
matchn3ﬁpts(_,’,xl,Yl,x2,Y2,_,_,X3,Y3,_,_) t-
within_tolerance (¥1,Y1,¥%2,Y2),
within_tolerance (X1,Y1,43,¥2),
within_tolerance (%2,Y2,%3,¥3), V.
match_3~pts(xl,Yl,_,_,xZ,Yz,_,_,_,_,XB,YJ) t-
within_tolerance (¥1,¥1,%2,¥2),
vithin_tolerance (X1, Y1,X3,¥3},
wilhin_telerance (¥2,¥2,%3,¥3), !,
mateh 3 _ptafl , %I, Y1, X2,%2, ,_,_,_.%2,%2) :-

-
-
_!
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within_tolerance(X], Y1, X2,¥2),
within tolerance(Xl,¥1,X%3,13),
within_tolerance (X2,Y¥2,X3,Y3), !.
match_3_pts(¥1,Y1, ,_,_,_.%2,¥2,%3,¥3,_,_) :-
within_tolerance(X1,¥l,X2,Y2),
within_tolerance (X1, Y1, X3,Y3),
within_tolerance(X2,Y2,¥3,¥3), !.
match_3_pts(_,_,%1,Y1,_, ,%X2,¥2,X3,¥3,_,_) :-
within_tolerance(X1,¥Y1,X2,Y2),
within tolerance(X1,Y¥1,X3,¥3),
vithin_tolerance (X2,Y¥2,X3,¥3), !.
match 3 pts(X1,Y1, , , , ,X2,¥2,_,_,%3,¥3) :-
within_tolerance (X1, Y1,%2,Y27,
within_tolerxance(X1,Y1,¥%3,712),
w#ithin_tolerance(X2,¥2,¥%3,Y3), !.
match 3 pts(_,_,XI,¥Y1,_,_,%2,¥2, , ,X3,Y3) :-
within_tolerance (X1, ¥1,%2,¥2),
within_tolerance (X%}, ¥1,X3,Y3),
within tolersnce (%2,Y2,X%3,¥3), !.
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/* Succeeds if top node of tree iy anchored to an edge by means of */
/* an educ-intersection. 1f so, the tree is ‘complete’, since */
/* each leaf node is anchored by wmecans of a rzgion vertex. */
complete_tree(tree((I,J),L,R)) :-

ordered(IX,J,11,31),

tbdry(_,_,(2x1,01], (X, YIB},LPE),

cdge_bdry_intersection(_, {11,J1],(X,¥]), !.
complete_tree(tree((I,J},L,R)) :

ordered(1,J,11,431),

tbdry(_l_lllllJll'lxly'n,lbpt’l

edge_bdry intersection(_, [1),d1),LPL), !.

/* ReLracts all bDdrys associated with nodes in ‘tres’ */
e¢liminate_tree_tbdrys((}).
e.iminate_tree_tbdrys(ctree(lr,d9),L,Rj) :~
getract_succeed(tree({X,3), , 17,
order~1(1,0,11,J)).
retre® _succeed (thidry{ , . (11,31}, . )),
climinate tree_tbdrys(l),
eliminate_tree_tbdrys(R), !.
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[oreeseerass "iind_exnct_opp pt" sulordinate predicates #wssessscsacsy
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update_npp_edga (1,3, (LX, LY, c{C), X2,Y2|OF)) :-
opposite_edge (0E),
update_opp_=d3e2i1,J, [LY, LY, ¢(C),#2,¥Y2]0OF),0E), }.

update_opp_edge2 (I, d, (L%, LY, ¢{2}, %2, Y2|CF}, (%a, ¥a, il, Xb, Y}:;0E)) -
on_linelLX, LY, Sa, Yo, 0, ¥h)
retract {(oppogite_sidge FOEQ) ),
update epr etdael ((LZ, LY, X2, Y2]), [Xa, ¥n] ,0L0,OEL),,
avgert (oppoaite_edan(0E1)), !.
dpunte_opp_edg (1,3, LY, LY, c{C), #2,¥210F], (%8, Ya, i, %b, YLIOE]) s~
update_opp_odgez (1, Jd, (LY, LY, =w{C), X2, X200}, (Xh,¥bjOL), *.
updatc_npp_e#ch(l,d,[L!,bY,c(C),XZ,?ZIOPi,[]).

/* 1f OF iy counterclackwiae alowg ey wilgn: ¢/
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update_opp_edge3 ({LX, LY, X2, Y2), (Xa, Ya}, [Xa, Ya, H,Xb, Yb|OEO],
{Xa, Ya, h(0),X2,Y2,h(ccw), LX, LY, H,Xb, Yb]OEO]) :-
on_ray (X2, Y2, LX, LY, Xa,¥s), !.
/* 1f OP is clockwise along opp edge: */
update_opp_edge3 ((L¥,LY, X2,¥2), [ Xa, Ya], [Xa, Ya,H, Xb, Yh!0EOD),
[Xa,¥Ya,!, L2, L2, hicw),X2,¥Y2,h(o),Xb, ¥ |OED}) :-
on_ray(%2,¥2,L%,LY,Xb,¥b), .
/* 1f OP is neither clockwise or ccw then it goes into HCA interior or it */
/* goes toward goal into HCA exterior, so it says nothing about opp point */
update_opp_edge3 ({LX, LY, X2,7¥2], [Xa, Ya], [Xa, Ya,H, XD, XL|OEO],
[Xa, Ya, i, X, YDIOEOQ])) :— !.
/* 1f LX,LY is not on current opp edge segment, recurse to next segmenf */
update_opp_edge3 ([LX, LY, X2, ¥2], [Xa, Ya], [XD, Yb, H]OEOQ]), [Xb, Yb, HIOEL1]) :=-
not (same ([(Xa, Ya), [Xb,¥b})}),
update_opp_edge3 ([LX, LY, X2, ¥2), [Xa, Ya],OE{,OE1), !.

lbaﬂaﬁabhkhﬂhhﬁlﬁhllAﬂiﬁﬂﬁﬁﬁﬁ‘.ﬂhﬁﬁﬁl.0ﬁhAIﬁﬂhﬁﬁiﬁhh.ﬁhk*hhtﬂﬁ.ﬁﬁlﬂht/

/aresrsassnsn mypdate_opposite_edge™ subordinate predicates Arsradan/
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/* new_opp_pt finds a new (& correct) opposite point if one is */
/* present, or rtns orig wpp pt. 1t it recurses thru whole list */
/* with h(o) for each edge, iInitial opp pt was good. If{ it */
/* finds a label other than h{o), then it needs new opp point. */
new _opp_pt(_,(_,_,blo),_, )., [Xopp,Yopp)} :-
opposite_point (Y.opp, Yopp), !.
new_opp_pt{_, [%1,¥1,kic),X2.12|OE},F) :-
new_opp_pt ({X1,Y1), [X2,Y2]|CE],F), !.
new_opp_pt (_, [X1,Y1,h{cew),%2,Y2,_,%3,¥3],p) :-
optimal_path({¥2,¥1]_],Ccecw),
o=z _bisection_search (X2, ¥2,X3, Y3, %cw, Yew),
optimal_path{[Xcw,Ycw|_j},Ccw),
calc_opp_pt (X1, ¥1,4cw, Ycw,Ccew,Ccw, P), |,
new_opp_pt ([%0, Y0}, [X1,Y1,h(cw) ,X2,Y2]_],P} :-
optimai_path({%2,¥%2]_],Ccv),
oe_bisection_search(Xl, Y1, X0, Y0, Xccw, Yccw) ,
optimal_path{[Xccw, Yeew]_),Czev),
calc_opp_pt (%2, Y2, Xcew, Ycew, Cew, Ceew, R), !,

oe_bisection_search(Xl,Y1,%2,¥2,X,Y) :- /* Bisect edge; compute OP */
Xi0 is X1 + (X2-%1}/2, /* from widpt; if OP starts*/
Yi0 i3 Y1 + (¥2-Y1)/2, /* slong edge, tiiis is the */
round_to_4decpl {¥i0,X%i), /* point we are looking for*/

zound_to:Jdecpl(YiO,Yi),
oplimal_path{(Xi,¥i,c(C),X,YIOF)),
on_line(x,¥Y,¥%1,¥},%2,Y2),!.

oe_bigection_secarch(xl,Y1,¥%2,¥2,X,¥) :- /* If OF does noL start on */
Xi0 is X1 + (X2-%%1)/2, /* edge, seazsh between */
Yi0 is Y1 + (Y2~-¥1}/2, /* point 1 and proint L. s/

round %to_ddecpl (%30, Xi),
round_to_4decpl (Yi0, ¥1),

not {within_tolexonce (Xi,¥i, %1,¥1)),

o= _bisectivn_search(Xl,Yl,%i,¥i, X, ¥), t.

ce_bioection_seazch(EI,YI,XZ,YZ,X,Y) [ /* 1f no correct QP is t/
Xi ia X1 v (#£2-%1)/2, /* found, return Pt 1 as */
Yi ix ¥1 ¢ (¥2-¥1)/2, /* answexz. Thias caae 7
within_telerance (%4,Y4,%1,Y1), /* SHOULD HOT HAPPEN, a0 s/
tell (miasing_ops), /* print a warning, 7

write (' llead OF for start-point '},

write({%3,7i}),n),

tell {noar),

write (WARNINS: wiaaing optimal path Lzom opposite edze’),nl,
write (/ for predicate ’"oe_biscction_search’*’),nl, !.
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write_bdrys_to_£ile(hca_opm, {]).
write_bdrys_to_file(hca_opwm, [([1,J]),B,LPt] [BdzySel])) :-
tekl (hca_opmw),
wiite (‘bdry(’),
write({1,J)),write(’,’),wxite(B),
weite(’).’),nl,
write_bdrys_to_file(hca_opm, BdrySet) .

write_iter_to_screen :-
retract (number_of iter(i)),
Iplusl is 1 + 1,
assert (number_of_iter(Iplusl}),
tell (user),
write (’ consistency check ‘),
write(I),nl, !.
write_heading :-
r:gion_vertices([X%,¥IR}), goal_ point{¥g,¥Yqg),
cons (iX,Y{IR], (X,¥?),Region),
tell (hca_opm),
listing(title),
write (' zegion(’),vwrite (Region}.wrxite(’).’),nl,
write{ al(l’),write(¥g),wrcite(’,’),write(¥Yg),vrita¢’}§ 7),nl,
listing(tree}, !,

write_to_scrazen(X) :-
tell (user),
write(X),ni,!t.

/QOQQQO’Q.Q0b.i.h.".‘ﬁﬂ’ﬁ.'ﬁ’&l.ﬁ“ﬁﬁ‘ﬁﬁlﬁ*Qﬂﬁﬁﬁtﬂ.....ﬂ!ﬁ.ﬁ'&ﬂﬁIgQ'"’/

I.&Q.b.beQDQQQQQAOQQQQ uti’lit}' p:ﬁd‘cateﬂ GOQQOOQQQQQQQ...ﬁﬂ.’-&v’s’l‘ﬂ/
/00.Qk.0‘000.-\anﬂh‘lﬁ.l“.ﬁﬁﬁ.AﬁAAAn‘hhlhﬁﬂﬁﬁ.th.hﬁﬁﬁﬁhﬁ..lﬂﬁa&knl0/

/* Succeeds 1f lins sec¢ments intersec:z, but do not share an endpnint. */
interior_intersection ((X%1,Y1(B1},LPt], (X2, Y2]B2],LPt2, IntFt, Bity, B2tT} :-

not (aame (LRt L, LPL2)), /* 1f inters at endpk, fuila; if nok,*/
not (same ((%),¥X1), (%X2,Y2))})), /* and intezsects gomevhere, succeeds’/
not (same ([X1,Y11,LFt2}), /* Assumes Bl & B2 intexswuct v/
not (same {{X2,72],LPt1}), /* in at moat one point. &4

bdry_intersectaion((¥1,Y1[B1}, (X2,Y2|B2}, IntPt,Bltr,B2tr), I,
interior_intersection{(X1,¥1{81},[]}, {%2,¥2182],(], IntPt,Blty,B2tr) i~ J* Fuli*/
bdry_intersection(lXl,Y1IB1), {%2,Y2]|D2j,IntFt,Bltr,B2tc}, !. /*bdxyst/
/* Full bdrys*/

‘bdry_intersection’ determines the intersection of two boundaries,
“or failo Lif there is no intersection. The boundaries axe

piecevisr linear,and are represented as a list of points, B

ie, ixl,y},x2,y2,22,.¥3,...1. Tolerance is allowead.

&nee an intersection ia found, it is cached to speed up future references */
bdry_intersaction(Bl,B2, [Xi2,YiZ},Bltr2,B2tx2) :-
bdry_intersection] {appsx, D1,B2, [Xi,Yi],Bltrunc, B2trunc),

%32 is (floox (%i*10600)/10000),
Yi2 is (£loor(Yi*10000)/10000), .

teplace_laat_coorda(Bltrune, [Xi2,Yi2],Bltr2),
replace laat_voords (B2trunc, (%i2,¥i2]),B2tx2),
usgerta{bdry intersection(B),DZ, {X12,¥i2}),Bltr2,B82Lr2)), !.
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/* 'bdry_intersection_exact’ is like ‘bdry_intersection’, except that
* no tolerance is allowed on intersection point being interior to
* both bdrys, and bdry_intersections are not cached. */
bdry_intersection_exact (81, B2, [Xi2, ¥i2], Bltr2,B2tr2) :-
bdry intersectijonl (exact,Bl, B2, {Xi,Yi),Bltzunc,B2trunc),
Xi2 is (floor(Xi*10€000)/10000),
Yi2 is (floor(Yi*10000)/10000),
replace_last_coozde (Bltrunc, [Xi2,¥i2]),Bltr2),
x-placo last” _cooxds{B2trune, {Xi2, ¥i2], B2tx2),!.
/* Check lE any- segment of bdry 1 matchies the 1st segment of bdry 2. */
bdry_intersectionl (Prec, [X11,Y11,X12,Y12(|81), [X21,¥21,X22,Y22|82], (X1, Yi),
Bltrunc,B2trunci :-
bdry_intersection2(frec, (X13,¥11,X12,Y12}B1},
[X21,¥231,x22,Y22), {Xi,Yi],Bltrunc, B2txuncj, !.
/* Recursively check the next segment of boundary 2 with all of bdry 1. */
bdry intersectionl (Prec, [X11,¥Y11,X12,Y12])B1}, (X21,Y21,X22,¥22|B2), {Xi,Yi],
Bltzunc, [*21, YlebZL:uncl) e
bdry_ intersectionl (Prec, {¥11,¥11,X12,Y12|B1],
(%22, £22¢B2}), [%i,¥i]),Blecrunc, B2trunc), !.
/* Recurgively ace if any seg of bdry 1 matches the lst scegment of bdry 2. */
bdry intersectionz(appx, (X11,Y1},¥12,Y12{BL},
{X21.Y21,X22,Y22), {X3,¥%i], [X11,Y11,%X3,¥i}, [X21,¥2L,%i,¥Y4})) :~-
lipe_interseccionu(Xll, ¥il, X12, ¥12,%21,¥21,X22,Y22,Xi, !5),
hetuecﬂ(71,rli X127,

bLeLwead (Y, ¥11.712), /* Check if pt i is betwzen */
betuween {£1,%"1, X27), /* endpoints of both segments 4/
between (¥i, ¥21,¥22}, 1. /* includively LY 4

bdry_inters»ctionl (sppx, (X11,¥1},X12,Y¥i2{D1},
iX21,7v21,%X22,%22}, {*i,¥i}, (Ki3,Y11|Blerusc),B2krune) :-
bdry int»rsecuionb(ﬁpﬂa,[£12,V121511,
l)(i ¥21,%22,Y2Z), [Xi, ¥} +Bltrunc, BZtrunc), 1.
bd:y~intuzsecuion7;exqcb,!All,{11 x1z,v\218L},
{%22,Y21,%22,¥22),; 12, ¥4}, {12, %1L,.04,%04), (X21,¥21,24,¥i)) :-
line lntozsection (0, v12,212,¥12, K2, Y21,%22,422,%1,Y1),
exact_Letveen{Xi,Ni1,x12},

ezact_betweenli¥i, Yil,%12), /* Check if pt i is between #/

exart hetwevn(xi xX23 AZa,, /7 enupelinty of both segments */

a%act bcuwaenz'J Y21,%¥22), 1. /% Anclusively s/
bdiy_iut-raecticnz'cract.lxxl,xll %3%,%x321B1},

{X21,Y21,522,722], {33, 25}, {713, ¥1X)Ditrunc); B2trune) -

bdry_int ezacctzov?(exact ()<, ¥12i81}%,
(25, Y?l ¥22,%22), {¥4,¥¢3},0)treas, Bitrune), b,

zeplace_lasz_puordﬂ(l;, A% Y1 [N, 7)) .
replace last covxdé([?‘,riiwj [V Yl qek, vinzgy o
tvplacc lost coords(L,(!,‘!.ﬂa,, L3

get_thdeylJozdI(F,C, (1,3],8,40r ). = thdcyiF,C, {1,J),B,LPL) .
g»:t._Ll'dLjJ'JOI:J! FiCo L1, J) B it} o= thury(Y,C, [0, X}.8,L0L) .

reassert_vhdrysif, I, 0tr) .,

reaagert thdeys(F, ({{3, 3], &, LOLLIATY Ohwy 1~
sayext (Lhdry (F,CLr, {3, 3) . B, LEL) )
CX i3 Chxdl,
reassert_thdrys(:,ad C2), -

order indicez ([}, [)) :» !. . .
ordar indives: (i {1, 2].8, L0k [fenti, P11t 228 3, 400 (Rl sodhesu) t-
c-dared (1, J. 2,150, ’
sxder, indteea (Reak, Be:ls&dﬁnat!, .-
adjacem defryeli, B, I K, 8,3,9,8) ~ |
~eliacen bdr}all,a.?,g,l,ﬂ,a,h, :
aﬁiacnnt ndryq(x J,X ?,d,] L,E) -t

>
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adjacent_bdrys(1,J,K,I,J,1,1,K) :~ f.

adjacent_edges(1,J) :~ J is I + 1.
adjacent_edges(l,H) :~ numbex of_edges(H).

cet_initbdryldorJI1(1,J,B)

:~ initbdry({1,J),B).

get_initbdeyXdord1(I,J,B) :- initbdey([J,1],8).

get_tbdrys(_ ) :-

assert (bdry list([]))},

tbdry(_,_, (X, 3},B,LPtB),
retract_cut (bdry_list (L)),
assert (bdry_ list({{{I,J},B,LFtB)|L})},

fail.

get_tbdrys(A) :- retract (bdry list(a)), !.

reset_last pts :-

thdry (F1,C1, [X,0]),81, [LX1,LY1]},

/* Insures that intersecting */

tbdry (F2,C2, (K, %), B2, [LY%2,LY2}),
adjacent_bdrys(1,9J,¥%,1,11,02,K1,L1},
not (same ((1,J), (K, L])),
within_tolerance (LX1,LY1,1X2,1Y2),
retract_cut (tbdry (F2,C2;[K, L], B2, (LX2,1¥2])),
asserta(tbdry(F2,C2, {¥,L]},B2, {LX},LY1])),

fail, 1.
reset_last _pts :- !,

edge_adjacent_to_bdry(1,1,9).
edge_adjacent_to_bdry(J, X,J)..

hdry_starts_at_edye(I,J,J)
bdry starts_at_edge(1,J,3)
bdry_stacts at_esdge(1,l,1)
bdry_stacts_at_edge(1,n,1)
bdry_starta_zt_edge(n,1,1)
bdry_starts_at_edge(l, 1,H)

Diff is I-5, abs(Diff,1), 1!.
Diff is I-J, abs(Diff,1), !.

number_of_edges (M),
number_of_ edges(N),
number_of_edges (N},
number_of_edges (H),

1.
I
i

/* Opp Ft is located proportional to OP costs at each end */
calc_opp_pt (X1,Y¥1,X%2,Y2,C1,C2, {Xopp, Yopp)) :-
distance (X1,Y1,%2,Y2,D12),
DelX is X2 - Y1, DelY is ¥2 - Y1,
Yopp0 is ¥1 + ((D124C2-C1)/D12)*(DelX/2),
Yorp0 is Y1 + ((D124C2-(1)/D12)* (DelX/2),
round_to_4decpl (Xopp0, Xopp) ,
round_to_4decpl (YoppO, Yopp), .

/* Rounds off a number to four decimal plcces (to allow unification

/* with manually input optimal paths) */
round_to_4decpl {X,Xx) :- Xr is (floox ((X10.06005)+100060)) /10000

1)

/* bdrys have identical last points */
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* "hgutils" contains supporting predicates used by the "bg" files.
*
* Consulted and called by "bg”.
*»
*

Updated 12 Jan 89.
L]
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/* COMSTANTS: Dimensions of input map */
minX(0).

max¥. (60) .

wnin¥ (0) .

maxy (100} .

pi(3.14159) .

/¢ "precision" is the max number of line segments to compute */
/% for each lvis boundary, and twice the number for 2vis boundaries. */
precision(20).

tolerance(0.05). /* Pts clcser than this are usually not distinguished */
/* tolerance{0.015). */
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between(B,n,C) :~
tovlerance(T),
Bplus is B I T,
Cplus is C + T,
A =< Bplug,
B =< Cplusa, !.
between(B,n, L) :-
tolerance(T),
tminus i3 B - T,
Cminug is C -~ T,
A >= Bminuas,
B >= Cminus, |{.

exact_between(B,A,C) :-
A =< B,

B =< (C, !,
exact_between(B,A,C) :-
A >e D,

B> ¢, i.

strxiclly between(B,A,C) :-
A <8,
Rcg, t,
strictly_ between(B,A,C) :-
i > B,

B>cC, |I.

get_rcounLer_and_increment (CLr} :-
retracst (ctr(Ctr)),
Lplual ia Cte 4 1,
agaert (et (Tplual)), 1,




ordered({1,J,1I,d) :~ I =< J, !}.
ordered(1,9,9,1) - .,

abs (X, %) 1= X >= O,

abs({X,¥) :=- X =< 0, ¥ is =-X.

xetract_succeed (F) :- retract{f), !. /* Always succceds, fails on backtrack */
retract_succeed( ) :- !

retract_cuk (P) :- retract(P),!. /* Retracts P, fails on backtracking #*/
unify cut (f') := eall(F),!. /* Geta 1ot inatance of F, £ails on barktLracking */

/* fails the first time called, tien succeeds, toggling thereafter */
fail_succeed :- not(failed), assect{failed), !, fail, !.
fail succeed :- failed, retract(failed), !.

get_last_pt ([Xlast,Ylast]}, Xlast, Ylast).
get_last pt([X,Y|Rest),Xlast,Ylast) :~
get_last pt {Rest, Xlast,Ylast).

get_last_list({Last],Last).
get_last list ({F|Rest],Last) :-
get_last_liat (Rest,lLast).

within_tolerance (X1,Y1,X%2,¥2) :-

tolerance(Tolerance),
DelX ia X1-X2,

DelX < Tolerance,

Del¥ > ~Teclerance,

DelY is Y1-Y¥2,

Del? < Tolerauce,

velY > -Tolerance, !.

sane_set (Setl, Set2) :-~
same (Set1,Set2), ¢.

same_set ([AlSwtl], Set2) @~
match_and_delcte (A, Ser2, Set2Leosh),
same_set (Getl,Scc2Lessn), !,

match_and_cdeiete(A. (AL, []).

m:tch and |_delete(l, [A|Rest],Rest).

match and _delate (A, [B]Set]), [BISetLeash)) :-
match_and_ﬂelete(A,Set, SetLessh).

/* input: starting and ending integers */
/* output: list of lists of the form {{1,2),12,3]),...,(1~-1,8),in,1)] */
/* where an index pair appears the num of times its initbdry appears */
index_lior_Itod(J,d,((J,1]))) :- 1.
index_ lint Itod{I,d,[X,iplusljiRest]) :~

lplusl is 1 41,

index_list_Ttod(Iplusl,d,Rest), !.

/* returna the nomber of inithdry(l1,J1,_)’s asserted */
nuwnber _of _1J_junithdiys(1,3,1) :-

aasert (bemp | num(ﬂ)),

iniy bjf'j’({a.\-;,

retract cut(tcmp num(?)),

Fedual is ki1,

ansexl (temp_nun{Fplusl)),

fail, !.
rumber_of 14 initbdrya(1,J,0) :-

rebzach_eul (temp_mou(ll) ), !,




/* input: list of 3-element bdry lisks of form {{[(1,2),B1,LPt1l}....) */
/* output: list of lists of the form [[1,2),(2,3],...]) where each */
/* bdry in jinput list is represected by its index list */
index_Yist((),(}) :- L.
1ndex_list([[[I,J],_,_]lResh],[[I,JlIRevbist]) -

index_list (Rest,RevList), !.

/* input: Num of edges and list of indices of each bdry previously asserted */
/* output: list of indices of each bdcy not previously asserted */
complement_index_list (M, [[1,2]11nList),OutList) :~= /* 1f (1,2} is first */
complemenL index_list1(2,M,InList, [],Outbist), I.
complement_index lxst(n Ianst OutList) :- /* If [1,2]) is not first */
compl-ment index_list1(2,N,InList, [[1,2]],0utList), !.
/* 1€ {1,2) is firot OR lasL, do not. include it in complement liat +/
/* 1f [1,2) is neither first {14°R 1a3st, include it */
. complement._index_listl (N, 1, [}, First, {in,1)|First])) - .
complement index 1xstl(n n,fiy,1}},First, First) - I,
complement_index lxatl(u M, 1{1,2}),Ficst, [(3,1]]) :- !,
cempliement_index lxstl(N n, L, 1),1,24),Ficvoe, ()) = !.
c0mplement_1ndex_list1(1 N, [{I,J3))Rest}, First, RevindenList) :~
Iplusl is I + 1,
complement _index_listl {Iplusl,N,Rest ,First,Revindexlist), 1!.
cemplement index Iistl(l m,.ijJd, K] iRest}, ri:at,l(IvlpluslliRchndexhist]) s=
Iplnsl is I + 1,
not (same {I,3t},
nomplemcnt_index_fiat}(lplusl,v,llJ,K}IRest],Fizst,Revlndexbist), .

set_asuvbtraceion (L, [},I) :~ !,

set_subtraction{Ll, {A]L2], L4) :~
deicte_from list(a,L1,L3),
zet_sublraction(L3, L2,L4), !.

delete_Crom Jiat (A, {3,4}) := 1.

delete_fxom liat (A, (AIL],L2) :—
delete from list(A,L,L2), !.

dclgté_itnm_lis:(h.lnlblplulbi]) s
delete_frow _list(dh,1,L2), l.

/Q
4 predicates related to rotation and trarslation of the boundury.
“/
compute_angle_of_rotation{Xo,Yo,¥,¥,hngle) - /* Computes angle to rot.*/
helX is X-Xo, /* the n-axis Lo the ~/
Lel¥ >= 0, /* vector (Xo,¥n)=>(X,Y) */
LelY ia Y-Yo, /* vhen the angle is */

Augle is -~asin(Del¥/sgrt (DelX*2iDel¥Y*2)). /* between -pi/2 & pi/2, */
compute_angle_of_rotation(¥o, Yo, X, ¥, Angle} :-

DelY iy Y-Yo, /* ...wben the angle is */
LrlY >+ G, /* between pi/2 ¢ pi. */
DelY ig X=Xo,

pifriyy,

Angle is -Pitasin(lelY/sqgrt (DelX%*liDelX"2)}).
compute_angale_of_rotation(Xec,¥o,X, Y, Angle! :-

bel? is Y-Yc, /* ...wnen Lhe angle ia ¢/
Dely <0, /% Lntween pi & 3p1/2 +/
Dely is A-Yo,
pilri),
Miyle io Fiitasin(Del¥/aqet (DelX*21Del¥*2)).
invert bdry :- /* Reflecta the beondary ¢/
. rotract (Ldry () ), /* about the verticol line */
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invert_bdry (R, Vx,R_inv),
assert (bdry(R_inv}), !.
invert _bdry ([X, 2], X, [%,Y)).

/* X=Vx, where Vx is the

/* bdry vertex oxr last pair*/

/* of coords in bdry list

invert_bdry ([X,¥IR}),Xrefl, {Xinv,Yinv|Rinv]) :-

inverc_bdry(R,Xzefl,Rinv),

invert_coords (X, Y, Xrefl,Xinv,Yinv).

invexrt_coords (X, Y, Xrefl,Xinv,¥) :-
Xinv is 24¥Xrefl - X.

rotate_bdry (Angle) :~
retract {bdry (L)),
rotate_bdry(L,Angle,_,_,Lrot),
assert (bdry(Lrot)), !.

zotate bdry([X,Y],Angle, X, %7, [X,Y]).

/* Assumes last item in */
/*1ist is bdry vertex */

rot.ate_hdry ([%X,¥IL),Angle,Xo, Yo, [Xrot, Yrot |Lrot})) :-
rotate_bdry (L, Angle, %o, Yo, Lrot) ,
tranglate_point (%, Y, Xo, Yo, Xtr, {tr),
roLate_point (Xtr, ¥tr,Angle,Xrotl,¥rotl),

re_tranulate_point (Xrotl,Yrotl
rotate point(X,¥,Angle,¥rot,¥Yrot) :-

+ Xo,Yo,Xrot, Yrot} .

Xrot is Y.*cos{Angle) + ¥Y*sin{Angle},
Yrot is Y?cos(Auglej = X*sin(Angle;.

rotate2 bdry(Angle) :-
retzact (bdrxy (L)),

rotate2 bdry (L, Angle, ,_ ,Lzot),

assert (bdry(Lrot)), !.
rotate2 bdxv(|[¥X,Y),Angle,X, Y, {]).

/* nssumes last item in */
/*list is origin of rotation, but not on boundary */

rotate2 bdry ([X,¥Y|L),Angle,¥o, Yo, [Xrot, ¥Yrot |Lrot])) :-
rotate2_bdry{L, hugie, Xo, Yo, Lrot),
tranglate_point (X, Y, Xo, Yo, Xtr, Ytr),
rotate_point (Xtr,Ytr,Angle, Xrotl,¥rotl),
:e_h:anslate_poiut(Xzotl,Y:otl,Xo,Yo,x:ot.Y;ot).

translate_point (X,Y¥,Xo, Yo, Xtr,Ytr) :-
Ytx is X-Xc,
Ytr is Y-Yo.
:e_t:anslate_boint(Xtr, tr,Xo,¥Yo,%,¥Y)
X is XtrtXo,
Y is YtriXo.

/*
*# liiscelloneous utility predicates.
*/

debug_ list{Filename) :-
tell(Filenane),

* -
.

listing (veglon_vertices), listing{ritle},linsting(goal_poiny),
listing{tbdry),listing(inithdry), listing(tree).

revexse Jist{{},(]).

reverse_list-({¥%[L],ReviconoX) :-
reverss list(l, RevlL),
cons {Revy, |4}, eviconsij .,

reverse_edge list (1%, ¥}, {%,Y)).

revarss edgn_liat ({X,Y,{L], ReviiconaX)
zoverse_edge_liat (L, Revlj,
cong {hevl, (I, ¥, Y}, kevicongi) .

‘-
:
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reverse_path_list ([(X,Y), {X,¥X]) :- L.
reverse_path_list ([X1,Y1,XZ2,¥2}, (X2,¥2,XL,¥1)) = !,
reverses_path_list{[X1,¥1,6X2,¥2,%X3,¥3}, [X3,Y3,%2,¥2,X1,¥1}) :- I,
reverse_path_list (IX1,Y]),X2,¥2,X3,Y3,X4,¥4], [X4,Y4,X3,¥3,%X2,¥2,X1,¥1]) := 1.
reveyrse_path_list ({X1,Y},%2,¥2,X3,¥3,X4,¥4,X5,%5],
1%5,¥5, %4, ¥4,X3,¥3,%X2,¥2,X1,¥1j) :~ 1.
reverse_path_list ({X1,¥1,6X%2,Y2,X3,¥3,X4,Y4,%5,Y5,X6,Y6),
IX6,¥6, XS, Y5, X4,¥4,X3,¥3,X2,¥2,X1,¥1}) :~ 1.
reverse_path_list ({X1,Y1,X2,6¥2,%3,¥3,X4,Y4,X5,Y5,X6,¥Y6,X7,¥7],
(X7,¥7,%6,Y6,X5,¥5,X4,¥4,%3,¥3,%X2,Y2,%X1,¥Y2}) = 1.
reverse_path list ((X1,Y1,X2,Y¥2,X3,¥3,X4,Y4,5,Y5,%X6,Y¥6,X7,¥7,X8,Y8],
IX8,¥8,X7,¥7,%X6,Y5,X5,¥5,X4,¥4,X3,¥3,X2,¥2,X1,¥1)} :- !, 7
reverse_path_list ([%1,Y1,X2,Y2,%3,Y3,X4,Y4,X5,¥5,X6,Y6,X7,Y7,X8,¥8,X9,¥3},
[{X9,Y9,X%8,¥3,X7,Y7,X6,¥6,X5,¥5, X4, Y4,X3,¥3,X2,Y2,%1,YL}) :- %,
revesse_path_list ({X,Y{L},RevLconsXy) :=~
reverse_path_list (L,FRevl),
cons (Revl, (X, Y], RevLconaXY), !.

/* Return the point of intersection of two lines, fail if parallel., */

/* Note: next 4 rules are included to retain precision where possible. */
/* 1f lines share a point, that point is the intersection: *»/
line_intersection!X?,¥1,X2,¥2,¥1,¥1,%X4,¥4,%1,Y1) :=~ 1.
line_intersection(Xl,Y1,X2,¥2,42,¥2,X4,Y4,X2,¥2) :
line_intersaction(X1,Y1,%2,¥2,X3,¥3,%1,Y1,X1,¥}) :-

o sem smm

line_intersection(X1,Y¥1,X2,¥2,X3,Y3,X2,Y2,X2,¥2)
line ‘ntersection (X1, ¥1,X2,¥Z,X3,¥3,%4,%4, X8 ¥4)

not {X2==X1}, /* Handle sepaxately if *»/

not (X4r~x3), /* one line is vertical */

Ma is (¥2-Y1)/(X2-X1), /* Slope of 1st line */

Ba is Y1~Ma*X1, /* Y~intecept of 1st line */

th io (Y4-¥3)/(X4-X3), /* Slope of 2nd lipe */

Bh is YX3-Mb*¥X3, /* Y-intecept of 2nd lane */

not (Mbhwwta) , /* This happens if lines are paxzallel

Xi is (Ba-Bb)/ (Mh-tta),
Yi is Mb*Xi 3 BbL, .
line_interxsection(Xl,¥1,X1,Y2,X3,¥3,X4,Y4,%Xi,Yi) :-

not (X4=w%3), /* Case where 1st line is vertical */
Mb is (Y4-Y3)/(%4-X3), /* Fails if both lines vertical */
Bb is Y3-Mb*X3,

%i is X1,

Yi is Mb*Xi 4+ Bh, I,
line_intersection(Xl,Y},6%2,Y2,X2,Y3,%3,¥4,X4,Yi) :-

not (%2~=X1), /* Cuse where 2nd lin2 is vertical */
Ma is (Y2-Y1)/(X2-X1), /* Falle if both lines vertical */

Ba is Yi-Ma*Xi,

Xi ia X3,

¥i is Ma*Xi + Ba, !.
line_intexsection(X1,Y¥Y1,X2,¥2, %1,Y1,¥%2,¥2,%1,¥1), /* If lines are identical *
/% return the 1lst vertex as intersecltion point.*
line_intersection(X1,Y1,X1,Y2,%1,¥3.X1,¥4,%1,Y1), /% Case where lines are
/* vertical & coincident; return lst vertex of 1lst line ay int pt.
line_interscction(X1,Y1,X1,¥2,¥%3,¥3,X3,¥4,%Xi,¥4) := /* Case where lines are
1, feil, /* both vertical, but not colncident; fail.
line_intersection(X1,Y1l,X2,¥2,X3,¥3,%4,Y4,%1,¥1) :~ /* Coincident lines */
not (X2==X1}),
niot (¥4rmy3),

a is (r2-Y1)/(X2-X1), /* ‘Slope of 1st line */

Ba i3 Yl-Ma*X}, /* Y-intacept of lst line */
nb ia (Y4-¥3)/(%4-%3), /* Slope of 2ad line */

Bh ia Y3-Mb*X3, /* t-intecept of 2nd line */
Harrtdly, /* Parallel */

Ba==BLh, !. /* Same v-intercepts */

/4 1L lines are coincident, return lat vertex ol 1gt Qine as int pt

e

a/

/
/
*/
*/
*/
¢/

*/




virtual_vertex(X1,Y1,X2,Y2,X3,Y3,%4,Y4,Xv,¥v) :- /* the virtual vertex is */
line_intersection(Xl,Yl,X2,¥2,X3,¥3,%4,¥4,Xv,¥v),t. /* the point of */
/* intersection of the lines., */

distance (X1,Y1,X2,Y2,D) :-
D is sqgrt((X2-X1)+2 + (Y2-Y1)"2).

/* Counts length of a list */

list_length((},0).

list_length([X|Rest}, X lusl) :-
list_length(Rest, 1),
Iplusl is I + 1.

/* Computes length of path P */

path_Ziength({[1,0).

path_length{{_,_],0).

path_length({X1,Y3,c(C),X2,¥2{P],D) :~- /* 1f cost data is present, find */
path_length({(X2,¥2(Fr},D1), /* weighted cost of path; */
distance (X1,Y1,X2,Y2,D2),
D is D1 + C*D2, .

path_length(([X1,Y1,X2,¥2|P},D) :- /* 1f cost data is not present, */
path_length (1X2,Y21r],D1), /* £ind EBuclidean length of path */
distance(X1,Y1,X2,¥2,D2),
D is D1 + D2, !. .

/* Computes length of edge P */
edge_length((},0).
edqe_length([_,_},0).
edge_length([{X1,Y1,Vv,X2,Y21P},D) :~
edge_length({X2,¥Y21F],D}),
distanca (X1, Y1, X2,Y2,D2),
D is D1 4 D2, I,

/* Computes the distance between pts 1 & 2 along path P */
/% First travels down the path until pt 1 is found */
/* then constructs list btwn ptl & 2, then finds its length */
path_distance(X1,¥1,X2,Y¥2, {X1,¥1iP},D) :-
path_distance2(X1,¥Y1,X2,¥2, {X1,¥1}|P)},P12),
path_length(Fri2,v), !.
path_distance (X1, Y¥1,¥2,¥2, {X3,¥3,c(C)IF],D) :-
path_distance (X1,Y¥1,%2,Y2,p,D).
path_distance2(X1,Y1,%1,Y1, ,[]).
path_distance2 (X}, ¥1,X2,¥2, {%2,¥2(P}, [%X2,¥2]).
path_distance2 (X1, Y1, X2,¥2, (X3,¥3,c(C) Ir), [%3,¥3,c(C) [IntList)) :-
path_distance2(X1,Y1,X2,¥2,P,IntList), !.

same (A, A) . /* succeeds if both zrgs are the same, fails otherwise */

/* concat arg 2 (atom), onto end of arg 1 (list), rekturn as arg 3 (list) */
cona({),B,B) := 1,
cons ((X|Bl1},B2, [XIB3]}) :~
cons{R1,B2,B3),1!.
/* A robust arccosine routine (in C~Frolog, acos(l) bombs) */
arccoo(¥,0) :-
X »-0.99999, |,
arccos(¥,A) :~ A ia acos(¥), !.

/* PRemove the laal polr of coorda f£xam the lst arg, return as 2nd arg */
remove_last_pt (X, ¥, %2,¥25,(¥%,¥]).
remove_last pt (IX,YIL), [¥%,YIRev]l]) :-

remove last pt(lL,RevlL), 1,




convert_deyr_to_rads(Augle_in Deg, Angle_in_Rad) :-
degr_to_rads_factor (F),
Angle_in Rad is F*Angle_in_Deg, !.
convert_rads_to_degr (T2, T2beg) :=~
rads_ to_degr_factor(F2j,
T2bey is F2*T12, !.
degr_to_rads_factor(F) :- F is 3.14159/180.
. rads_to_degr_ factor(F) :- F is 180/3.14159.

/* Succeeids if lst path includes 2nd path, fails otherwise, */
/* Assumes both arguments are bound. */
includes_path(fF,F):~ 1.
includes_path({X1,¥1,c(C)iF1},P2) :-
inzludes_path(Fi,r2), !.

/* Succeeds if atg 1 is a member of 2nd arg (& list), else fails */
membor (X, [XIR]) :=~ !,
member (¥, {X21R])) :-
membex (X, R), 1.
/* Succeeds if args 1 and 2 are memberz of 3rd arg (a list) */
/* in order listed, else fails #*/
member (X,1, {%,YIR]) = I,
membex (X, 7, {X2,Y2|R}) :-
mamber (X, Y,R}, .
/* Succeeds if args 1 thru 4 are members of Sth arg (a list) */
/* in order listed, else fails */
membex {¥1,Y1,X2,Y¥2, (X1,Y1,¥%2,Y2|R)}:~ !,
member (X1, Y1,X2,¥2, [X3,Y3,X4,Y4IR}) :-
memberx (X1, ¥1,X2,Y2,{X4,¥Y4{R]), !.

abs(h,A} :- A >= 0,
abs (M, ~A) := A < O,

/0.Dﬁiﬁ‘lhhathi*iﬁ}Qﬁﬁﬁﬁﬁﬁhﬁ.ﬁ*lﬁﬂﬁﬂﬁﬁGﬁﬁ*iﬁﬁ*ﬁﬁ’ikﬁﬁhkﬁlﬁﬂﬂﬁﬁﬂhﬁﬁkﬂﬁﬁﬁﬁ/

/* HOTE: For development -purposes (until a pt-to-pt path planner is */

/* included in the program) optimal paths from each terrain feature */

/* vertex must be included” in the mapdata file. Additicnally, OP’s */

. /* from each shortcutting point along the opposite edge must be incl. */

/* There are two ways to quexy an optimal path: */

/* 1. optimal_path({¥,Yir]} will get an OF from pt X,Y if such an OP */

/* exists in the databage. */

/* 2. optimal _path({X,¥IP],C) with C uvabound will get the OP from X, X */

/* and determine the cost of the path, */

/% 3. optimal_path({%,¥iF}) will get & 'pseudo OP’ from X,Y if one */

/* exists and thexe is no ‘optimal_path’; this is applicable to the #/

/4 firse pass only. */

/Qﬂﬁ‘bﬁﬁQiﬁﬁhﬁiﬁﬁklﬁﬁﬂlﬂﬂ*ﬁﬁﬂﬁﬁﬂﬂ'}'*f:\ﬂﬁﬂﬂﬂhﬂiﬁﬁﬂﬁhkﬁﬂﬁﬁkﬂﬁk*ﬂﬁﬂkﬁlﬂ#",

/* Computes the cost of an optimal path, given the path in the DB */

optimal path(L,D) :-
war(p), /% 1f opt, path with total cost is already */
optimal_path(L), /* assesrted, use it (bgmapdata is consulted */
optimal_path2(L,p),!. /" before bgutils), else compute it here, */

optimal pathZ({%i,Yl,c(C),X2,Y2},b1) :~ /* 1f opt_path has cost data, uge */

distance (X1,¥1,X2,Y2,0), Bl is C’D, 1. /*-this rule as the base case.*/
optimal_path2([%1,Y¥1,c(C),X2,¥2]|Reat),D) - /A If opt puth has cost data use */
. optimal_path2((%2,Y2[Rest],D2), /* vthis rule as the rec., case */
distance (X!,Y1,%2,Y2,D1), Dla is C*D1,
B ia Dlnyg2, 1.
optimal_path(l) :-
pozudo_optimal path(L}.

J* succeeda if 1ot pt in on line segmenk between pt2 ¢ ptd inclusive */
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on_line (X1,Y1,X1,¥1,X2,¥2) :~ !,

on_line(%2,Y2,X1,Y1,X2,¥2) := 1.

on_line(xi,Yi, X1,Y1,X2,¥2) :~-
between (Xi, X1,%2), between(Yi,Y¥Y1,Y¥2),
DelX is X2-X1, DelY is Y2-Y1l, not (between{DelX,0,0)),
Yy is (Xi-X2)ADel¥/DelX + Y2,
within_tolerance(Xi,¥i, Xi, ¥i), !.

on_line (Xi,Yi, X1,¥1,X2,¥2) :-
between (Xi, X1, X2), betwveen(Yi,Yl1,Y2),
DelX is X2~-X1, DelXi2 is X2-Xi,
within_tolerance (DelXi2, Yi,DelX,Yi}, I.

edge_visibility check {({Xa, Ya,Xb, Yb}, [Xg, Yg), (Xa,Ya,v,Xb,¥b]) :~
CrossFrodi is (Xb-Xa)*{¥g: Ya)-(Yb=-Ya)* (Xg~Xaj,
CrossProdZz >= 0,!. /* True if AngleGAB is hetween O and pi, */

/* which is txue if AB is visible from G.*/
edge_visibility_check ((¥a, Ya,Xb,¥b], {Xg,Yg], [Xas,Ya,h,Xb,¥b}) :- !,
edge_visibility check ({Xa,Ya,Xb,¥b|RListRest], [Xg,Yg],

{Xa, Ya,v|RevisedRListRest}) :-
CrossPxodZ is (Xb-Xa)*(¥g-Ya)-(Yb-Ya)*(Xg-Xa),
CrossFrodZ >= 0, /* Txue if AngleGAB is between 0 and pi, */

/* which is true if AB is visible from G.*/

edge_visibility check ({Xb, Yb|RListRest], (Xg,¥Yg], RevisedRListRest),!.
edge_visibility_ check(({Xa, Ya, b, Yb|RListRest], {X9,¥g],

{¥a,Ya,hiRevisedRListRest)) :-

edge_visibility check ([Xb,YbiRListRest], [Xg, ¥g),RevisedRListRest),!.

set_done_flag(Xbdry,Ybdry) :- /* Compute bdry until it is ¢/
maxY {MzxX) ,min¥ (MinX), /* off the page by 1/2 the */
maxY (MaxY),minY (MinY), /* width of the page, to */
Xbdry > MinX- (MaxX-MinX)/2, /* sccount for rotation. r/

Xbdry < MaxX+ (Maxx-1inX)/2,
Yhdry- > MinY- (MaxY¥~MinY) /2,
Yhdry < MaxY+(Max¥=-l1in¥)/2, f.
set_done_f{lay(Xbdry, Ybhdry} :- /* 3f LAry is off Lhe output page, */
assert (done), !, /* set “done® */

store_2via_results(T1,T2,Y1,Y2,B,Dg,Vx,Vy) :-
Yy is Vx + Dg*cos(B),
Xbaseline is Xg - ¥1*sin(T1l),
Xbdry is Xbaseline - ¥2¢sin(T2),
Ybdry is Vy + Y2*cos(T2),
set_done_£1lug (Xbdry, tbdry),
retract (bdry(BList)),
assert {(bdry ([Xbdry, Ybdry|BList));, !.

/*

* Qutput predicates,
-

/

output_init_hixys :-
tell {bdry_out),
nunher_ofl_edgea (i),
write to bdry file(number_of_edges,l),
nl, .
initbdry ({B1,n2}),B),
write Lo _bdry_ f{ile(bdry,R,N1,02),
£ail.

output_init_bdrys.




output_active_bdrys :-
tell(bdry out),nl,
acy ivebdry ([NH1,N2),B),
write_ to bdry file(bdry,B,N1,H2),
fail.
output_active_bdrys.

/ﬁ
* Output prolog facts to file "bdry out"”
»
/
write_to_bdry file(title,Title) :~
write flag(no_write), !.
write to bd:y £ile(t1t1e,Txtle) -
wr;tc_tlag(write),
tell (bdry out),
write(’title(’’’), write(Title), write(’’’).’), n), 1.

write_to bdry file{yoal,[X,¥])} :-
write_flag{no_write), !.
write to_bdry file(geal, [X,Y]) -
write flag(write},
tell (bdry out),
write(‘goal({’),
write ([X,Y}]),
write(’).’), nl.

write_to_bdry file(number_ of_edges, N} :-
write_ flag(no_write), !.
write_to_bdry file(number of_edges, N) :-
write_flag(write),
tell (bdry_out),
write(’ number_of_ edgesi’),
write (),
write(’)."), nl.

write_to_bdry_file(opposite_point, X, Y, Xm, ¥m, Xp, Xp}) :~
write flag(no_write), 1.

write to bdzy file (opposite_point, (X, ¥; Xm, Ym, Xp, ¥p]) &~
Vrite _Llag(write),
tell(bd:y_out),
write(’opposite_point ('), .
write(X), wxite(’,?), write(Y), '
write(’).’), nl,
write{’opposite_point_minus(’),
write (Xm), write(’,’), «rxite(im),
write{’).’), n),
write (' opposite_point_plua(’),
write(¥p), write(’,’), write(¥p),
write(’).’), nl.

write to_bdry file{reglon,R) :-
write_flag(no_write), 1. - )
write to bdry Iilﬂ(zcglou,n) s-
wxxLﬂAilag(write,,
tell (bdey_out),
write{’ region{’), write(R), writei®l.’), nl..

write to bdry fileisegion elisk,p) :~
w:itﬁ flag (no wirite), f.
write te “dxy L;lc(rcaian cligt,R) 1=
write_ [laaluriLc),
Lell(hdl) ~ut},
wxiLc(’zﬂnion elist ('), writelr), weite(’).’}, nl.
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write_to_bdry file(bdry,,NJ,N2). :-

write flag(no_write), !.

write to bdzy file(bdry,8,N1,N2) :-

write _flag(write),
tell(bdxy_out),

write ('bdry(’),

write ({M1,M2]),write(’,"?
write(B),

write(’).’), nl.

write_to_bdry file(bdry,B) :-

write _flag(no_write), f.

write_to | bdzy file (bdry,B) :~

/Q

* Output graphics instructions in "figure" format to file "bdry fig”

¢/

write_flag(write),
tell(bd:y out),
wriLe(’hdry('),
write(B),
write(’).’), nl.

output_to_fiqure file :-

tell(bd:y fig),

wzite_heading(bd:y},

bdry (BdryList),

write_to_fig file(bdry,BdryList), !.

write tc_fig file(title) :-

tell (bdry fig),

title (Text),

assertz (subtitle(’’)),

subtitle(Text2;,

assertz(width_of_title(10)), /* Default width */
width_of _title(w),

Indent is 4.25 - W/16,

write{drawtext),nl,

write (Indent) ,write(’ ’),write(10.3),wxite(’ *),wxite(0),n},
write (Text),nl,

write (drawterxt),nl,

write{Indent),write(’ ’),write(9.9),write(’ *),write(0),nl,
write(Text2),nl, !,

wecite _to_fig file(title) :- f,

write heading(bdry) :-

tell(hdry_fig),
write (lineatyle),nl, wiite{l),nl,
write (linewidth),nl, write(0.01),nl.

write heading(region) :-

urite.t

Ll (blry fig),
write(lineatyle),nl, wrire(2),nl,
write (Linewidth),nl, write(U.}3),nl.

-n fan C3Yectlvlry 231wt "9 Y24 Noat1). o
tnll(hd:y fiq),
draw lfne(xl,rl %2.Y2),
write _to_fig leﬂ(fdx o 1 %2, 721 Rest}) .

write to_fig_ rxlﬂ(hdry
werite to fio file(ine »dry [¥3,¥1,%2,42[Reat]) :-

fcll(bdry_fiu),
draw_line_inv(X1,¥1,X2,52),
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write to fig_file(inv_bdry, [X2,Y2|Rest]).
wzite_to_fig_file(1nV_bd!y:_).

write_to_fig. file(goal, [X,Y]) :-
tell (bdry_£iqg),
scale coords(X,Y,X1,Y1),
write(linestyle),nl, write(l),nl,
write(circle),nl,
write(X1),write(’ ’),write (Y1), write(’ '), wxite(0),n2,
write(0.04),n1, !,
write_to_tig~£ile(inv_goal,[X,!]) =
tell (bdry fig),
scale_coo:ds_inv(x,Y,xl,YI),
write (linestyle),nl, write{l),nl,
write(circle),nl,
write(¥1),wvrite(’ ‘) .wxite(Y1l),write(’ ’),wxite(0),nl,
write (0.04),nl, .

write_to_fig;tile(zegion,IXI,YIIRestl) e
tell (bdry fig),
wziteﬁto_giq_tilez(regioqf(X',Yllaeat],Xend,Yend),
draw_line (X1,Y1,Xend, Yend), 1.
write_to_fig. file2(region, (X%, ¥),X,Y).
wzite_;o_;ig;tilez(xegion,[xl,!l,xz,¥2|nest),Xend,!end) s
tell (bdxy_fig),
draw_line(X1,Y3,X2,Y2),
w:ite_to_fig_tilez(xegion,lx2,¥2|nest1,Xend,!end), !.
w:ite_to_lig_ﬁile(inv_zegion,lxl,!l,xZ,!ZlResLJ) H
tell (bdxy- fig),
draw_line_inv(xl,Yl,xz,YZ),
wti;e_;o_fig~f11é(inv_gegion,(szYZIAest]), !.
w:ite_to~£ig_£ile(inv_zegion,_).

scale_coords(X,Y,X1,Y1) :~ /* Scales snd translates #/
maxX (MaxX) , maxY (MaxY) , minX (MinX +sminY (Min¥), /* coords to appxopriate */
Xl is 1 + (6.5* (X~MinX) / (MaxX~MinX)}, /* output coord system */
Yl is 1 4 (9‘(Y-Min¥)/(MoxY-HinY))' 1.

scale_coords_inv(X,Y,%1,¥Y1) :- /* also reflects the */
mIxX (MaxX) ,maxy (MaxY) ,minX (MinX) ,minY (Min¥), /* coords about the */
X1 is 7.5 ~ (6.5'(x-HinX)/(Haxx-MinX)), /* vertical line Xw4.25 »/

Y1 i3 1 4 (9%(Y-MinY)/(MaxY-MinY)), !.

dravw_line(XJ,Y1,X2,Y2) :-
scale_coorda (X1, Y1,X1lb,Y1h),
scale coords(X2,Y¥2,X2b,Y2Dh),
write (polyline),nl, write(2),nm,
write (X1b),write(’ f),write(Ylb),write(’ f),write(0),nt,
write (X2b),write (’ *),vrite(Y2b),write(’ *),write(0),nl, !.
dzaw_line_inv(Xl,Yl,XZ,YZ) ¢~
sca1e~ccuxds_inv(x1,Yl,xlb,Ylh),
scale coords_inv(X2,Y2,X2b, Y2b),
write (polyline),nl, write(2),nl},
write(X1b),write(’ ), write(Y1b),write(’ ‘), write(0),nl,
nrite (X2b), write (f ‘V,vrite(Y2L) ,write(’ *),write(V},n1, 1.




/ﬁﬁll!ltAhﬁﬁihhﬁﬂbtﬂﬂﬁdtﬁhiﬁA0.ﬂAQQﬁdQﬁﬂﬁlﬁ'ﬂ.tlﬂﬁhhﬁﬁ.hﬂ&lﬁ.ﬁﬂﬂhilh..ﬂ.
BRAARPAARRPAPAARAPHAAAADAAAAAAAARARAARAAARRARARARAARARRARARRARARRARAANAARAAAN

L]
*
[ ]
-
*

*bgmd22"

File "bgmapdata” has terrain and goal data used by "bdrygen®".
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"region_vertices™ lists the vertices of one HCA
in clockwise order, First point listed can be any

of the vertices.

region_vertices((4,20,30,70,40,71,60,30,36,8]).

title(’Example 227).

goal_point (35,84).

/*
»
-

~7

“_cost” is the time required to travel one unit of distance.
Hote that this is the inverse of the "cost™ used in
the "sls" code.

interior cost(2).
exterior_cost(l).

» 0

"optimal_path” is a temporary set of predicates which specify
the optimal path list from each vertex in the map.
Eventually, it will be replaced by a rule which computes

the optimal path using a path-finding routine such as

“sls”" oxr “rrr”.

optima) path((41,20,c(1),30,70,c(1),25,84}).
optimal path((30,70,c(1),35,84)).
optimal_path((36,8,c(1),60,30,c(1),35,84]).
optimal_path{{60,30,c(1),35,84]).
optimcl_path({40,71,c(1),35,84]).
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